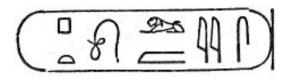
An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

Lane Schwartz

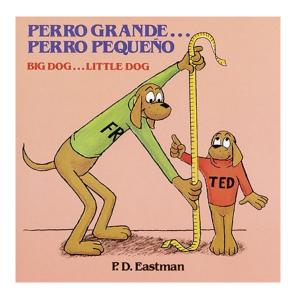
Air Force Research Lab lane.schwartz@wpafb.af.mil


Akeqiinga malighqutaqnalunga tuqlughaasiiniun America-m ama nunganun nekevghaviganun ataasiq nunaghllak asingani Kiyaghneghem, ilemngalghii ilakutelleq ama ataasiighngalghhi tamaghhaanun.

7,000,000,000 people



8 languages with at least 100 million speakers 85 languages with at least 10 million speakers 389 languages with at least 1 million speakers 6632 languages with at least 1 speaker

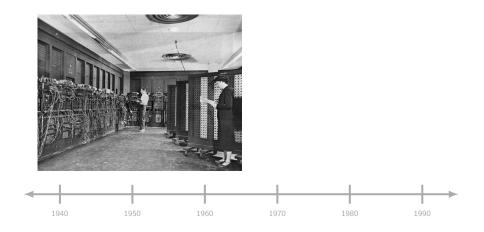

Motivation

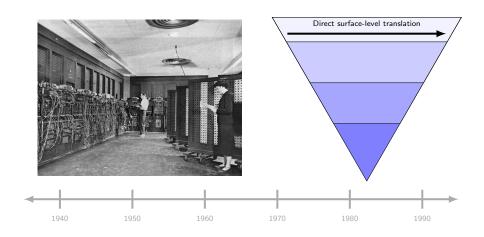
Machine Translation

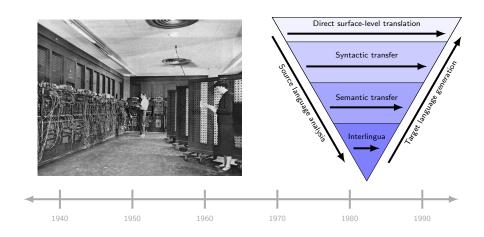
Incremental Par 0000000 Integration

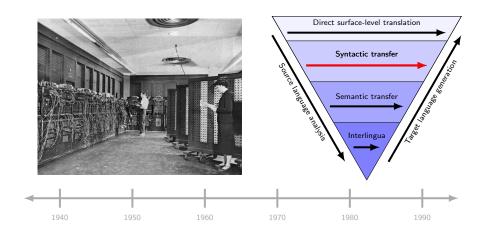
Results

頭抬	APPETIZERS	oh Diener	堆			CHICKEN	Lands I	Dinner
上海存在	Crispy Spring Roll (2)	3 3	左 宗	R	8	General Tso's Chicken	-	13
* * * 6	Vegetable Spring Roll (2)	3 3	芝麻	A		Sesame Chicken	9	13
# 10	Steamed Meat Dumplings (6)	5 6	25 19	- 1	E.)	Chicken w. Lemon Sauce	9	13
略 贴	Pan Fried Meat Dumplings (6)	5 6	陳皮	- 8	١,,	Orange Chicken	9	13
中級大田	Teriyaki Chicken Sticks (4)	6 7	81 18	- 8	1	Sweet & Sour Chicken		12
新肉罗香	Crab Rangoon (6)	5 6	唐 弘	羽	1	Moo Goo Gai Pan		12
18 排 作	Bar-B-Q Spareribs (4)	7	湖 南	- 8	Ø.	Chicken, Hunan Style		12
N N B	Pu Pu Tray (For 2)	13	腰 果	A		Chicken w. Cashew Nuts		12
文件 海 盤	Cold Jelly Fish	7	岩 保	Ŋ		Kung Pao Chicken		12
10 10 10 10 10 10 10 10 10 10 10 10 10 1			败 计	9		Chicken in Black Bean Sauce		12
1 年 4 年 3 日 4 日 5 日 5 日 5 日 5 日 5 日 5 日 5 日 5 日 5	Slicked Boneless Pig's Knuckle (Cold	12	市 時	- 1		Chicken in Curry Sauce		12
6 香 牛 服	Jelly Fish w. Shredded Roast Duck		- 40 40				(Whole)	
	Marinated Sliced Beef (Cold)	8	明爐				(Whole)	
保炸大腸	Crispy Pig's Intestine	8	北京片	皮界	4	Peking Duck (Haif) 17 Served v. 4 or 8 pencekes, ceion & plum souce.	(Whole)	32
以晚白飯魚	Crispy Silver Fish w. Spicy Salt & Pepper	10	35 N	9		Chicken w. Broccoli	8	
			四川	- 1		Szechuan Chicken	8	
*	SOUP		鱼类	8		Chicken in Garlic Sauce	8	
	JOUR	nch Dinner	JM, 12	N	8	Chicken in Garic Sauce		
鬼 梯 湯 🏺	Hot & Sour Soup	2 2				SPAFOOD		
25 音湯	Wonton Soup	2 2	海鱼	4		SEAFOOD	Lendy I	Olesse.
花 花 湯	Egg Drop Soup	2 2	四栋计	6 H		Fish Filet w. Lemon Squce	12	
K 菜 海	Vegetable Soup (For 2)	2 6	左 常	#		General Tso's Shrimp	100	15
建 原米等	Chicken & Corn Chowder (For 2)	6	88 MS			Sweet & Sour Shrimp		14
海鮮酸辣湯 *	Seafood H & S Chowder (For 2)	9	概 章	#		Shrimp w. Lobster Sauce		15
9年豆苗田	Seafood Tofu Chowder (For 2)	9	湖水			Shrimp, Hunan Style		15
北京北柱第	Dried Scallop w.	-	196 PK	7 5				15
	Yellow Chives Soup (For 2)	13				Shrimp, Szechuan Style		
医肉魚肚类	Fish Maw w. Crab Meat Soup (For 2)	12		市 司		Scallop w. Mixed Vegetable	13	
9 尚皮蛋	Fish Filet & Thousand Egg w.	-		報作		Shrimp w. Cashew Nut	100	13
0. 片湯	Cilantro Soup (For 2)	10		獎]		Kung Pao Shrimp & Chicken	12	13
五花根湯	Baby Clam w. Young Squash Soup (For 2)	10		獎 首		Kung Pao Shrimp & Scallop		17
(株里の大豆麻麻	Pork & Tofu w. Watercress Soup (For 2)	8		投海		Sour Cabbage w. Squid		13
2条肚片湯	Sour Cabbage w. Pork Tripe Soup (For 2)	8	玉湖	+ 1		Scallop Stir-Fried w. Chinese Broc	coli	15
	and the same of the same to the same	100	時菜	DE D		Fish Filet Stir-Fried w. Chinese Vegetable	12	15
			水黄	9	1 7.0	Fish Filet in Super Spicy Sauce, Szechuan S	ityle	15
煲	CASSEROLE		li E	祖出	0	Seafood Combo in Chef's Spicy Sau	ce	17
八珍豆腐煲	Assorted Meat & Seafood w. Tofu	15	三杯	小百		Three Cup Sauce Squid		15
1. 鱼鱼位亚省克	Tofu & Chicken w. Salted Fish	13	炒三	- 9	6	Triple Delight	14	
1 分牛前獎	Beef Brisket w. Turnips	13	-			2024		
1 鱼豆腐费	Canada Cod Fish w. Tofu	18	肉			PORK	Land C	á
東西市班易代 雷	Eggplant w. Spicy Ground Pork	13	80 MS	10		Sweet & Sour Pork		12
李粉族中征哲 贯	Short Rib & Vermicelli in Sate Sauce	16	17 18		7	Double Cooked Pork		12
9.瓜沙砚煲	Baby Clams w. Young Squash	16			0			12
多英生经货	Oyster w. Ginger & Scallion	15		肉丝		Pork in Hot Garlic Sauce		
更冬田頭便	Frog w. Mushroom & Bamboo Shoot	16	意 煤			Mongolian Pork	8	12
古唯田雅俊	Frog w. Ginger & Scallion	16		群 玉		Roast Pork w. Snow Peas		12
支竹羊腕便	Lamb w. Dried Bean Curd	16	央 板 梦			Pork Intestine w. Hot Pepper		13
文 TJ 平 MI 促 6.后粉结假关键				肉组		Shredded Pork w. Shredded Dried Tofe		12
DA和BNA完 E 放 程 片 使	Dried Shrimp & Squash w. Vermicelli	12	木 组	þ		Moo Shi Pork (4 Pancakes)	9	13
产型用作	Sliced Chicken w. Ginger & Scallion	13	叉境			Roast Pork w. Mixed Vegetable	8	
			44 HI	tt it		Shredded Pork w. Hot Pepper	8	




O Canada!
Our home and native land!
True patriot love
in all thy sons command.
With glowing hearts we see thee rise,
The True North strong and free!


Ô Canada!
 Terre de nos aïeux,
 Ton front est ceint
 de fleurons glorieux!
 Car ton bras sait porter l'épée,
 Il sait porter la croix!



Machine Translation Insights — Warren Weaver

"One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography."

Machine Translation Insights — Warren Weaver

"When I look at an article in Russian, I say 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

• Noisy Channel Model $\hat{e} = \underset{e}{\operatorname{argmax}} P(f | e)P(e)$

• Noisy Channel Model $\hat{e} = \underset{e}{\operatorname{argmax}} P(f | e)P(e)$

Translation Model

 Word-Based Translation Brown et al. (1988,1993)

• Noisy Channel Model $\hat{e} = \operatorname*{argmax}_{e} \frac{\mathsf{P}(f \mid e)}{\mathsf{P}(e)}$

Translation Model Language Model

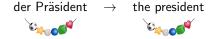
 Word-Based Translation Brown et al. (1988,1993)

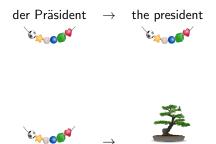
• Noisy Channel Model $\hat{e} = \operatorname*{argmax}_{e} \mathsf{P}(f \mid e) \mathsf{P}(e)$

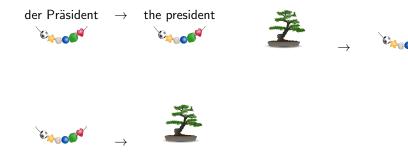
Translation Model Language Model

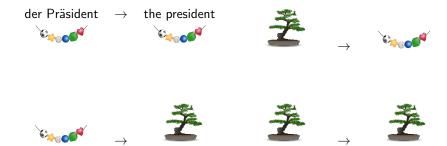
. . .

 Phrase-Based Translation Och et al. (1999)
 Koehn et al. (2003)



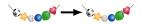

• Noisy Channel Model $\hat{e} = \operatorname*{argmax}_{e} \mathsf{P}(f \mid e) \mathsf{P}(e)$


Translation Model Language Model


Phrase-Based Translation
 Och et al. (1999)
 Koehn et al. (2003)

Statistics + Syntactic Rules in the Translation Model

Abeillé et al., 1990; Poutsma, 1998; Poutsma, 2000; Yamada & Knight, 2001; Yamada & Knight, 2002; Eisner, 2003; Gildea, 2003; Hearne & Way, 2003; Poutsma, 2003; Imamura et al., 2004; Galley et al., 2004; Graehl & Knight, 2004; Melamed, 2004; Ding & Palmer, 2005; Hearne, 2005; Quirk et al., 2005; Cowan et al., 2006; Galley et al., 2006; Huang et al., 2006; Liu et al., 2006; Marcu et al., 2006; Zollmann & Venugopal, 2006; Bod, 2007; DeNeefe et al., 2007; Liu et al., 2007; Chiang et al., 2008; Lavie et al., 2008; Mi & Huang, 2008; Mi et al., 2008; Resnik, 2008; Shen et al., 2008; Zhou et al., 2008; Chiang, 2009; Hanneman & Lavie, 2009; Liu et al., 2009; Chiang, 2010; Huang & Mi, 2010;



- Phrase-based Machine Translation
 - Linguistically naive
 - Most commonly-used statistical machine translation method
 - Outperforms syntactic TM systems for many language pairs

Statistics + Syntactic Rules in the Language Model

- Novel contribution of this work:
 - Technique for using any generative incremental parser as a syntactic language model
 - Incorporate our incremental syntactic language model into phrase-based machine translation

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words,

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words, an

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language model

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language model tries

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language model tries to

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words, an n-gram language model tries to predict

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language model tries to predict the

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an $n\text{-}\mathsf{gram}$ language model tries to predict the next

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an $n\text{-}\mathsf{gram}$ language model tries to predict the next word

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language model tries to predict the next word in

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language model tries to predict the next word in a

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an $n\text{-}\mathrm{gram}$ language model tries to predict the next word in a sequence

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an $n\text{-}\mathrm{gram}$ language model tries to predict the next word in a sequence of

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an $n\text{-}\mathsf{gram}$ language model tries to predict the next word in a sequence of words

Estimate n-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an n-gram language model tries to predict the next word in a sequence of words .

Estimate *n*-gram Language Model

$$P(e_n | e_1 \dots e_{n-1}) = \frac{C(e_1 \dots e_n)}{C(e_1 \dots e_{n-1})}$$

In other words , an $n\text{-}\mathrm{gram}$ language model tries to predict the next word in a sequence of words .

- Widely used in speech recognition & machine translation
- Can be trained on a corpus of monolingual data
- Variety of backoff and smoothing techniques to account for words not encountered during training

$\overline{\mathsf{Language}}\ \mathsf{Model}\ \overline{\mathsf{--}}\ \mathsf{P}(oldsymbol{e})$

The

The pictures

<s> The

Language Model — $\mathsf{P}(oldsymbol{e})$

The pictures of

The pictures

The pictures of the

pictures of

Lane Schwartz

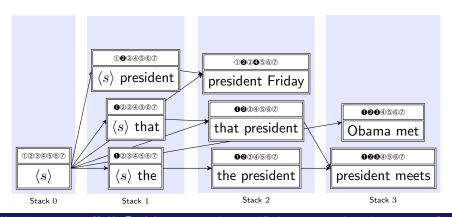
The pictures of the old

of the

The pictures of the old man

the old

The pictures of the old man is


old man

The pictures of the old man is are

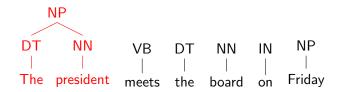
old man

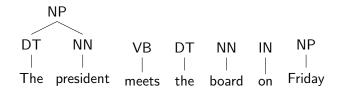
Phrase-Based Translation

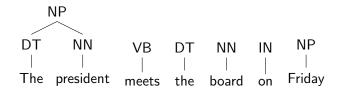

Der Präsident trifft am Freitag den Vorstand The president meets the board on Friday

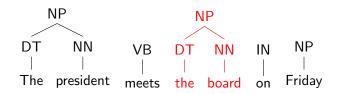
Phrase-Based Translation

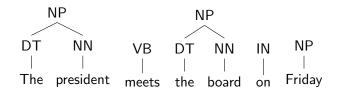
Definition

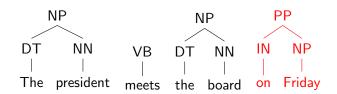

 $ilde{oldsymbol{ au}}_{t_h}$ represents parses of the partial translation at node h in stack t

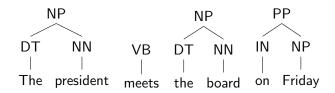


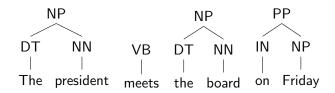


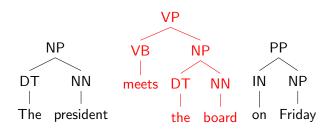



Bottom-up parsing requires entire sentence

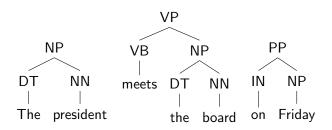


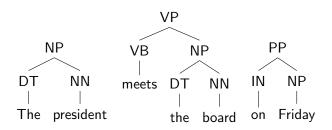




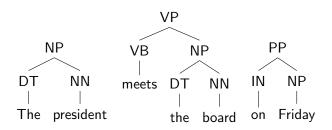

The president meets the board on Friday

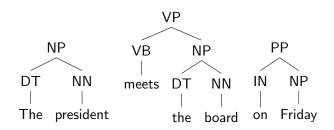
An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

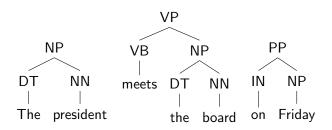


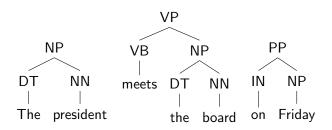


The president meets the board on Friday


An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

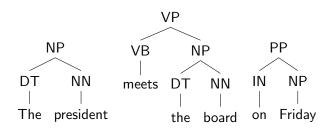

The president meets the board on Friday

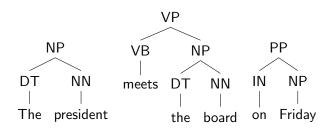

An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

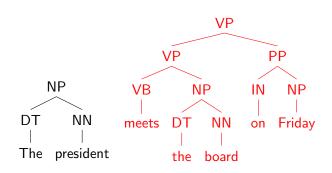


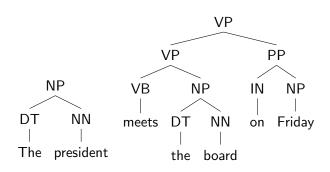
The president meets the board on Friday

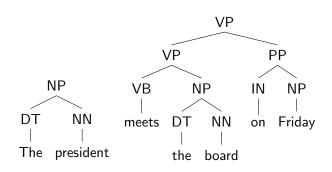
An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

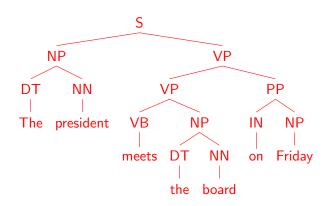


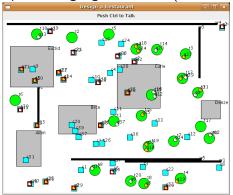

The president meets the board on Friday


An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation




The president meets the board on Friday


An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

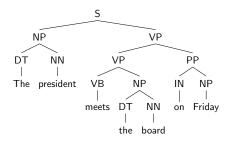


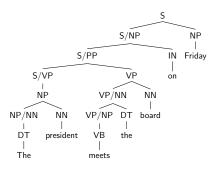
Incremental Parsing

- Humans hear language incrementally
- Humans process language incrementally
- Incremental parsers have nice pyscholinguistic properties
- Incremental parsers can process partial sentences

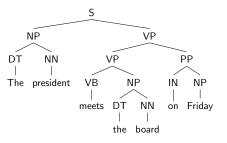
Incremental Parsing

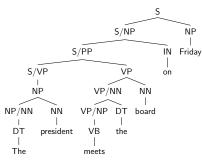
Spoken language interfaces (Schwartz et al, 2009)

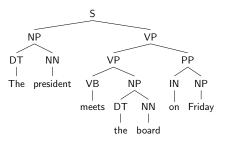


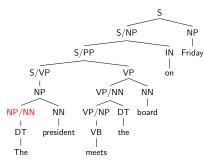

- Handling realistic disfluent spoken input (Miller et al, 2009)
- Modelling reading time (Wu et al, 2010)

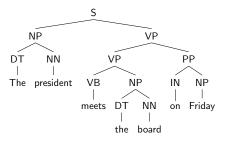
An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

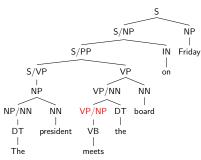

Coreference resolution (ongoing)

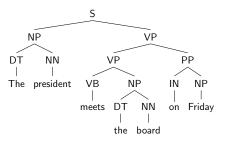

Transform right-expanding sequences of constituents

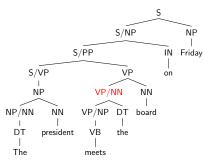


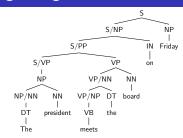

Transform right-expanding sequences of constituents into left-expanding sequences of incomplete constituents

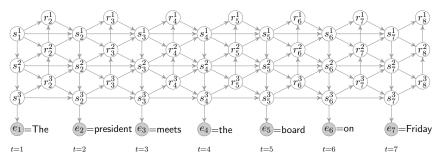

Transform right-expanding sequences of constituents into left-expanding sequences of incomplete constituents




An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

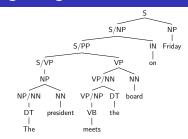

Transform right-expanding sequences of constituents into left-expanding sequences of incomplete constituents

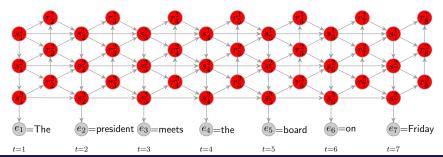

Transform right-expanding sequences of constituents into left-expanding sequences of incomplete constituents



Hierarchical Hidden Markov Model

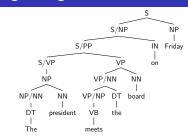
- Circles denote hidden random variables
- Edges denote conditional dependencies
- Shaded circles denote observed values

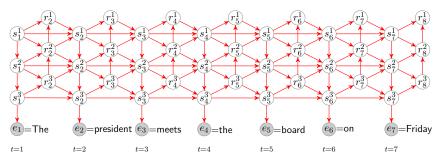

Motivation 00000000000 Machine Translation


Incremental Parsing 00000●0 itegration 00000000

tion Results

Hierarchical Hidden Markov Model

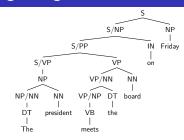

- Circles denote hidden random variables
- Edges denote conditional dependencies
- Shaded circles denote observed values

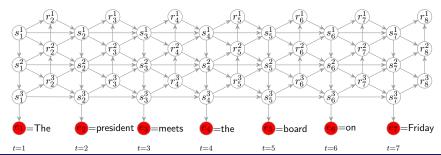


Hierarchical Hidden Markov Model

- Circles denote hidden random variables
- Edges denote conditional dependencies
- Shaded circles denote observed values

Motivation 00000000000 Machine Translation

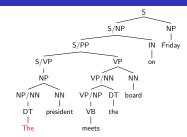

Incremental Parsing

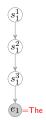

ntegration 00000000

tion Results

Hierarchical Hidden Markov Model

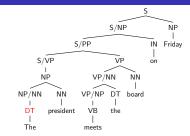
- Circles denote hidden random variables
- Edges denote conditional dependencies
- Shaded circles denote observed values

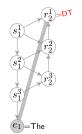

Motivation 00000000000 Machine Translation


Incremental Parsing 00000●0 ntegration 00000000

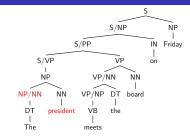
tion Results

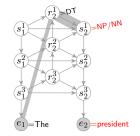
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

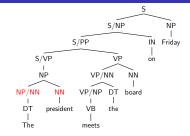


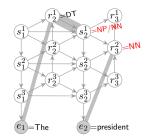
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

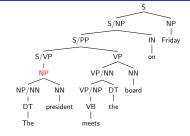


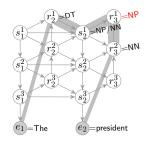
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata



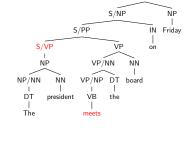
Analogous to "Maximally Incremental" CCG Parsing

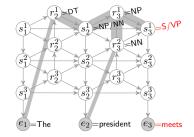

Analogous to Probabilistic Push-Down Automata



Analogous to "Maximally Incremental" CCG Parsing

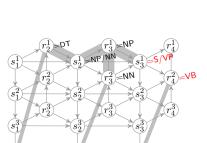
Analogous to Probabilistic Push-Down Automata

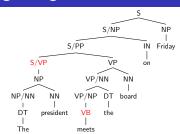



Analogous to "Maximally Incremental" CCG Parsing

Analogous to Probabilistic Push-Down Automata

Isomorphic Tree \rightarrow Path

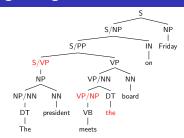

S

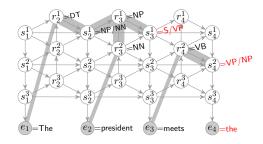

Analogous to "Maximally Incremental" CCG Parsing

Analogous to Probabilistic Push-Down Automata

Isomorphic Tree \rightarrow Path

president

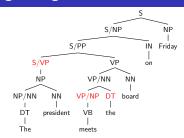


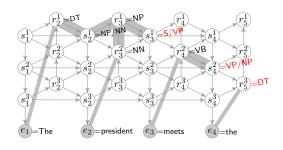

 e_1 =The

Analogous to "Maximally Incremental" CCG Parsing

Analogous to Probabilistic Push-Down Automata

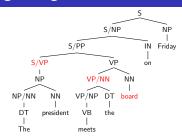
 $Isomorphic\ Tree \rightarrow Path$

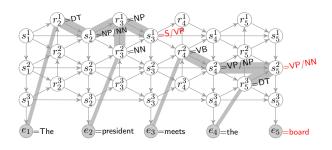




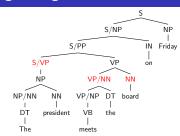
An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation

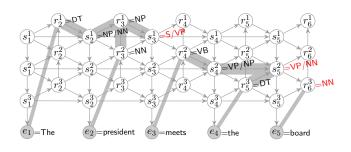
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

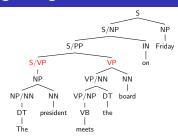


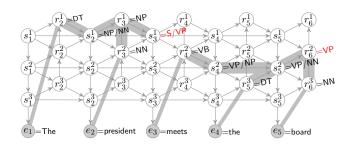
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

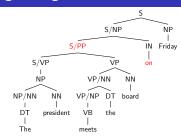


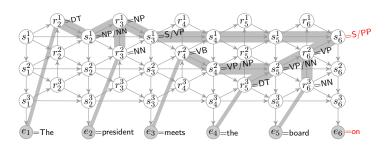
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

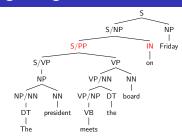


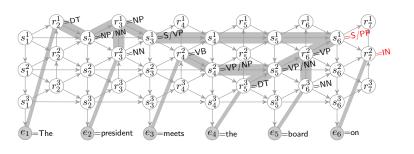
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

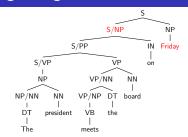


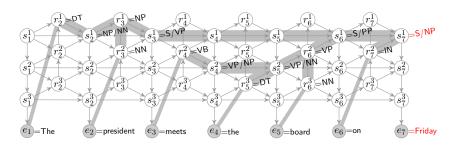
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

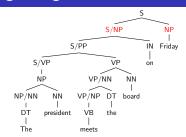


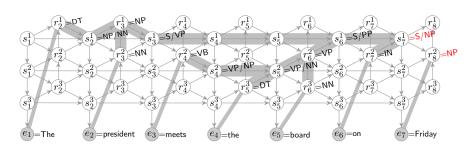
Analogous to "Maximally Incremental" CCG Parsing


Analogous to Probabilistic Push-Down Automata

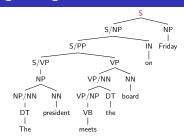


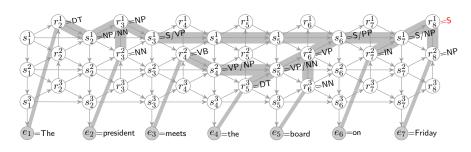
Analogous to "Maximally Incremental" CCG Parsing

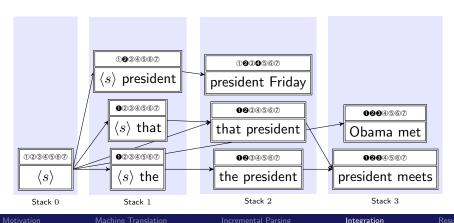

Analogous to Probabilistic Push-Down Automata



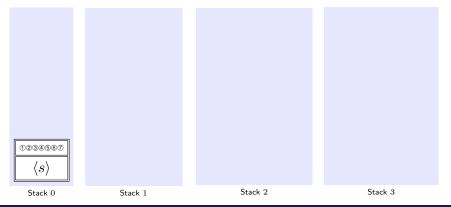
Analogous to "Maximally Incremental" CCG Parsing

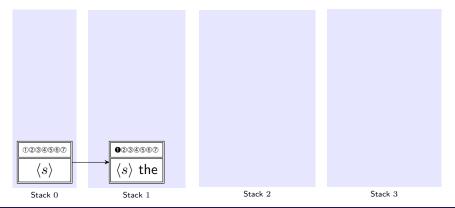

Analogous to Probabilistic Push-Down Automata



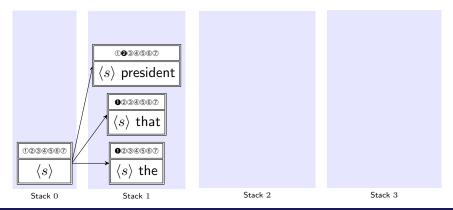

Analogous to "Maximally Incremental" CCG Parsing

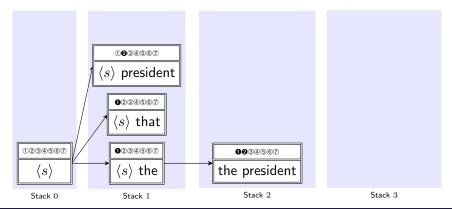
Analogous to Probabilistic Push-Down Automata

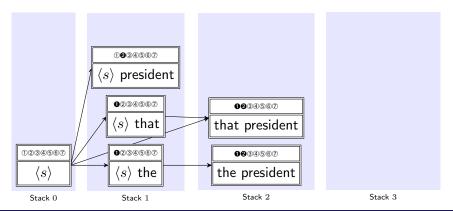


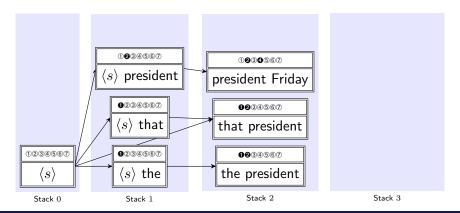

Der Präsident trifft am Freitag den Vorstand The president meets the board on Friday

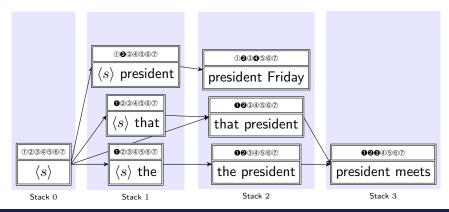
Der Präsident trifft am Freitag den Vorstand

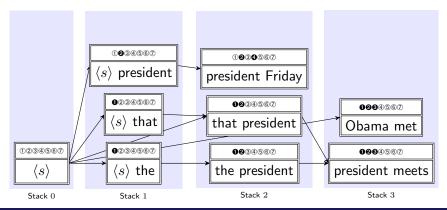

Der Präsident trifft am Freitag den Vorstand The


Der Präsident trifft am Freitag den Vorstand That

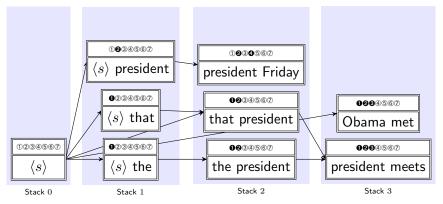

Der Präsident trifft am Freitag den Vorstand President


Der Präsident trifft am Freitag den Vorstand The president


Der Präsident trifft am Freitag den Vorstand That president

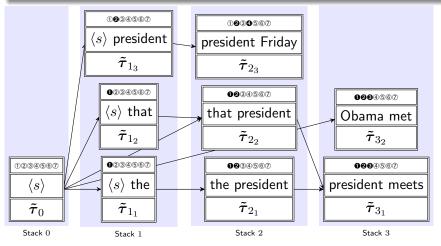

Der Präsident trifft am Freitag den Vorstand President Friday

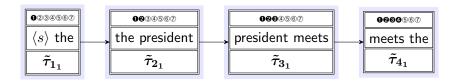
Der Präsident trifft am Freitag den Vorstand The president meets

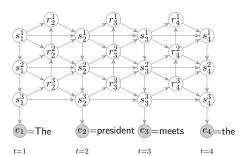


Der Präsident trifft am Freitag den Vorstand Obama met

Definition

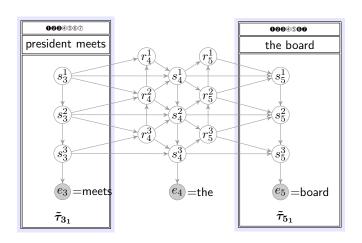

 $ilde{oldsymbol{ au}}_{t_h}$ represents parses of the partial translation at node h in stack t

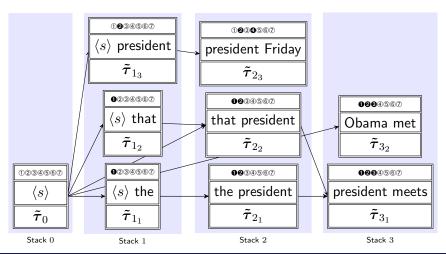

Phrase-Based Translation with Syntactic LM


Definition

 $ilde{oldsymbol{ au}}_{t_h}$ represents parses of the partial translation at node h in stack t

Integrate Parser into Phrase-based Decoder

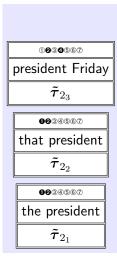

Motivation

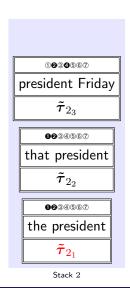

Machine Translation

OOOOOOO

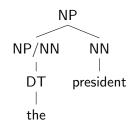
Integration 0000•0000 Results 000000

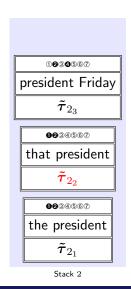
Integrate Parser into Phrase-based Decoder

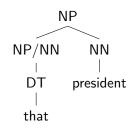


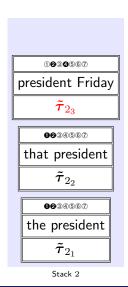

Motivation 00000000000 Machine Translation

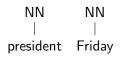
Incremental Parsi


Integration 000000●00 Results 000000


Stack 2


 $ilde{oldsymbol{ au}}_{2_1}$


$$\mathsf{P}(\tilde{\boldsymbol{\tau}}_{2_1}) = 0.15$$



$$\mathsf{P}(\tilde{\boldsymbol{\tau}}_{2_2}) = 0.12$$

 $ilde{oldsymbol{ au}}_{2_3}$

$$P(\tilde{\tau}_{2_3}) = 0.05$$

Our work presents a novel mechanism for incorporating syntax into the language model of phrase-based machine translation

Evaluation

How do we know if the syntactic language model is good?

Evaluation

How do we know if the syntactic language model is good?

- BLEU
- Perplexity
- Manual

Evaluation — BLEU

Experiment

- NIST OpenMT 2008 Urdu-English data set
- Moses with standard phrase-based translation model
- Tuning and testing restricted to sentences ≤ 40 words long
- Results reported on devtest set
- n-gram LM is WSJ 5-gram LM

Evaluation — BLEU

BLEU

- Modified precision metric for assessing translation quality
- ullet Measures n-gram matches against reference translations
- Higher BLEU scores are better
- Does not measure syntactic well-formedness

Evaluation — BLEU

BLEU

- Modified precision metric for assessing translation quality
- Measures n-gram matches against reference translations
- Higher BLEU scores are better
- Does not measure syntactic well-formedness

Moses LM(s)	reordering limit=10	reordering limit=20
n-gram only	21.67	21.88
HHMM + n-gram	21.44	21.93

Perplexity

- Standard measure of language model quality
- Reports how surprised a model is by test data
- Lower perplexity is better
- ullet Calculated using log base b for a test set of T tokens.

$$ppl = b^{\frac{-log_b\mathsf{P}(e_1\dots e_T)}{T}}$$

Language models trained on WSJ Treebank corpus

LM	In-domain	Out-of-domain
	Perplexity	Perplexity
WSJ 5-gram LM	232	1262
WSJ Syntactic LM	385	529

Language models trained on WSJ Treebank corpus

LM	In-domain	Out-of-domain
	Perplexity	Perplexity
WSJ 5-gram LM	232	1262
WSJ Syntactic LM	385	529
Interpolated	209	225
$WSJ\ 5 ext{-}gram\ +\ WSJ\ SynLM$		

Language models trained on WSJ Treebank corpus ...and n-gram model for larger English Gigaword corpus.

LM	In-domain Perplexity	Out-of-domain Perplexity
WSJ 5-gram LM	232	1262
WSJ Syntactic LM	385	529
Interpolated WSJ 5-gram + WSJ SynLM	209	225
Gigaword 5-gram	258	312
Interpolated Gigaword 5-gram $+$ WSJ SynLM	222	<u>123</u>

Evaluation — Manual

Manual Examination

- Actually look at the translations
- Gold standard for measuring quality
- Assess syntactic well-formedness

Evaluation — Manual

ID	Segment 624, Document "devtest" [$\Delta_{\rm BLEU} = -0.15$]
Source	. ' پر ' وقت لکھے گا تاریخ کا فیصلہ
Reference (reference0)	but ' time will recount the judgment of history ' .
Reference (reference1)	but ' time will write the judgment of history ' .
Reference (reference2)	but time will decide what history will write in the end .
Reference (reference3)	but time will write the decision of the history .
Hypothesis (ngram)	the decision of history written on ' time will ' . [0.29]
Hypothesis (hhmm)	' time will write on the decision of history . [0.44]

Evaluation — Manual

ID	Segment 744, Document "devtest" [$\Delta_{\rm BLEU}$ =-0.23]
Source	. ملاقات میں حرج نحی
Reference (reference0)	there is nothing wrong in meeting .
Reference (reference1)	there is no problem in meeting .
Reference (reference2)	there is no harm in meeting with him .
Reference (reference3)	there are no problems with this meeting .
Hypothesis (ngram)	in the meeting , is not . [0.09]
Hypothesis (hhmm)	no harm in the meeting . [0.32]

Evaluation — Manual

ID	Segment 561, Document "devtest" [$\Delta_{\rm BLEU}$ =-0.21]
Source	ەر انسان كو معاشرے ميں اپني ذمے داري سمجھنا چادئے
Reference (reference0)	everyone must recognize his responsibility in the society
Reference (reference1)	every person should realize ones responsibility in the society .
Reference (reference2)	everyone in society should do his duty .
Reference (reference3)	every man should understand his responsibilities to society .
Hypothesis (ngram)	the society should understand their in every human being claimed responsibility [0.13]
Hypothesis (hhmm)	every human being claimed responsibility in the society should understand [0.34]

• Many others have incorporated syntax into translation model

- Many others have incorporated syntax into translation model
- Phrase-based machine translation uses a syntactically naive translation model

- Many others have incorporated syntax into translation model
- Phrase-based machine translation uses a syntactically naive translation model
- Our work presents a novel mechanism for incorporating syntax into the language model

- Many others have incorporated syntax into translation model
- Phrase-based machine translation uses a syntactically naive translation model
- Our work presents a novel mechanism for incorporating syntax into the language model
- Use any generative incremental parser as syntactic language model

- Many others have incorporated syntax into translation model
- Phrase-based machine translation uses a syntactically naive translation model
- Our work presents a novel mechanism for incorporating syntax into the language model
- Use any generative incremental parser as syntactic language model
- Straightforward and natural mechanism for integrating syntax into phrase-based machine translation

Thanks

Thank you!

Thanks to ...

- My wife & our children
- My incredibly supportive family and friends
- My advisor William Schuler & the UMN NLP lab
- Chris Callison-Burch & the Johns Hopkins CLSP & COE
- Georganne Tolaas, without whom nothing is possible
- My colleagues in the Speech & Language lab at AFRL
- Chris, Philipp, Josh, Chris, Adam, Phil, Hieu, Barry, Jon,
 Ondřej, Omar, Ken & the rest of the MT Marathon hackers
- My former colleagues at IBM Rochester
- Ann Copestake, my Cambridge M.Phil classmates, & the Gates Cambridge Foundation
- My committee

Acknowledgments

 Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force.

Incremental Parser as Syntactic LM Feature

$$\begin{array}{ll} \hat{\boldsymbol{e}} & = & \displaystyle \operatorname*{argmax}_{\boldsymbol{e}} \; \exp \sum_{j} \lambda_{j} h_{j}(\boldsymbol{e}, \boldsymbol{f}) \\ \\ \boldsymbol{\lambda} & = & \mathsf{Set} \; \mathsf{of} \; j \; \mathsf{feature} \; \mathsf{weights} \\ \\ \boldsymbol{h} & = \left\{ \begin{array}{ll} \mathsf{Phrase-based} \; \mathsf{translation} \; \mathsf{model} \\ n\text{-gram} \; \mathsf{LM} \\ \mathsf{Distortion} \; \mathsf{model} \\ \vdots \\ \mathsf{Syntactic} \; \mathsf{LM} \; \mathsf{P}(\tilde{\boldsymbol{\tau}}_{t_{h}}) \end{array} \right.$$

Results — Manual Examination

ID	Segment 103, Document "devtest" [$\Delta_{\rm BLEU}$ =0.68]
Source	? ? ? حکومت کے وعدے
Reference (reference0)	the promises of the government ? ? ?
Reference (reference1)	government 's promises ? ? ?
Reference (reference2)	the promises of the govt . ? ? ?
Reference (reference3)	government promises ? ? ?
Hypothesis (ngram)	the government ? ? ? [1.00]
Hypothesis (hhmm)	the government ? promise [0.32]

Results — Manual Examination

ID	Segment 158, Document "devtest" [$\Delta_{\rm BLEU}$ =-0.34]
Source	موجودہ چیف جسٹس کے خلاف دوبارہ ریفرنس دائر نھیں کیا جاسکتا , سعیدالزماں صدیقی
Reference (reference0)	reference can not be filed again against the present chief justice , saeed uz zaman siddiqui
Reference (reference1)	another reference can not be filed against present chief justice : saeeduz zaman siddiqi
Reference (reference2)	saiduz zaman siddiqi : a second reference can not be filed against the present chief justice
Reference (reference3)	saiduz zaman siddiqi : a second reference can not be filed against the present chief justice
Hypothesis (ngram)	the chief justice of سعيدالزما siddiqui can not file a reference again . [0.10]
Hypothesis (hhmm)	the chief justice can not be filed against the reference again , siddiqui [0.44]