
NP

PP

NNP

Illiniois

P

@

NN

lɪŋˈɡwɪstɪks

Abstract

Deep  learning  software  demands  reliability  and  perfor-

mance. However, many of the existing deep learning frame-

works are software libraries that act as an unsafe DSL in

Python and a computation graph interpreter. We present

DLVM,  a  design  and  implementation  of  a  compiler  in-

frastructure with a linear algebra intermediate representa-

tion, algorithmic differentiation by adjoint code generation,

domain-specific optimizations and a code generator target-

ing GPU via LLVM. Designed as a modern compiler IR in-

spired by LLVM and the Swift Intermediate Language, DLVM

IR is more modular and more generic than existing deep

learning compiler IRs, and supports tensor DSLs with high

expressivity. With our prototypical staged DSL embedded in

Swift, we argue that the DLVM system enables a form of mod-

ular, safe and performant frameworks for deep learning.
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Figure 1: Stages in the DLVM compilation pipeline.

Overview

We introduce DLVM, a new compiler infrastructure for deep

learning  systems  that  addresses  shortcomings  of  existing

deep learning frameworks. Our solution includes:

• a domain-specific intermediate representation specifically

designed for tensor computation,

• principled use of modern compiler optimization techniques

to substantially simplify neural network computation, in-

cluding algebra simplification, AD checkpointing, com-

pute kernel fusion, and various traditional compiler opti-

mizations,

• code generation through a mature compiler infrastructure,

• an embedded DSL that supports static analysis, type safety

and natural expression of tensor computation and has a

just-in-time (JIT) compiler targeting DLVM for AD, op-

timizations and code generation.
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Figure 2: Software stack of the DLVM infrastructure. Blue components are the compiler framework.

Background

• Within  the  deep  learning  community, most  current  ap-

proaches to neural networks make use of high-level frame-

works with a tensor domain-specific language (DSL) such

as Torch, TensorFlow, PyTorch, and MXNet.

• Traditionally, developers would use one of these frame-

works to define a computation graph (or dynamically gen-

erate graph nodes) that represents a neural network using

a DSL, and the framework would interpret the computa-

tion graph at runtime, performing reverse-mode algorith-

mic differentiation to obtain gradients required for training

neural network weights.

Novel Contributions

• The sequence of tensor computations defined by a neural

network represents a computer program, which is best opti-

mized through robust application of mature techniques in a

principled compilation pipeline. We treat the task of build-

ing and training neural networks as a compilers problem.

• We define a compiler intermediate representation (see Fig-

ure 4) specifically designed for the data types and calcula-

tions required by neural networks, with first-class support

for tensors and gradient calculations.

• We define principled compiler passes (see Figure 1) for

analyzing, differentiating, and optimizing neural network

code using current compilers best practices.

• We present neural network DSLs that utilize DLVM, our

neural network compiler infrastructure (see Fig. 2 & 3).

Related Work

• The two most closely related projects are the TensorFlow

XLA compiler and the NNVM compiler.

• The code representation in these frameworks is a “sea of

nodes” representation, embedding control flow nodes and

composite nodes in a data flow graph. To apply algorithmic

differentiation on this IR requires non-standard processing.

• Where TVM and NNVM are built as a DSL and a graph

library in Python with a C++ implementation, DLVM’s ar-

chitecture is closer to LLVM and the Swift Intermediate

Language, having an IR file format and a full-fledged com-

mand line toolchain.

DLVM

• We represent tensor computation in static single assign-

ment (SSA) form with control flow graph, and perform

algorithmic differentiation, domain-specific optimizations,

general-purpose  optimizations, low-level  optimizations,

and code generation.

• Our IR is much more expressive than XLA’s, including

modular IR components and general-purpose instructions;

this enables our approach to support full-fledged DSLs in-

cluding standalone compiled DSLs and perform more ex-

tensive optimizations such as inlining and interprocedual

optimizations.

• We anticipate other  existing deep learning frameworks,

such as TensorFlow, could be adapted to use DLVM as a

back-end.

// Staged function representing f(x, w, b) = dot(x, w) + b
let f: Rep<(Float2D, Float2D, Float2D) -> Float2D> =

lambda { x, w, b in
x • w + b

}

// Staged function 'g', type-inferred from 'f'
let g = lambda { x, w, b in

let linear = f[x, w, b] // staged function application
return tanh(linear)

}

// Gradient of 'g' with respect to arguments 'w' and 'b'
let dg = gradient(of: g, withRespectTo: (1, 2), keeping: 0)
// 'dg' has type:
// Rep<(Float2D, Float2D, Float2D) -> (Float2D, Float2D, Float2D)>

// Call staged function on input data 'x', 'w' and 'b'
let (dg_dw, dg_db, result) = dg[x, w, b]
// At runtime, 'dg' gets just-in-time compiled though DLVM,
// and computes ( dg/dw, dg/db, g(x, w, b) )

// Second order derivative of 'g' with respect to 'w'
let d2g_dw2 = gradient(of: dg, from: 0, withRespectTo: (1))
// 'd2g_dw2' has type:
// Rep<(Float2D, Float2D, Float2D) -> Float2D>

Figure 3: Code in Swift using NNKit, a staged DSL targeting

DLVM.

module "my_module"
stage raw

// Representing function foo(x, w, b) = dot(x, w) + b
func @foo: (<1 x 784 x f32>, <784 x 10 x f32>, <1 x 10 x f32>)

-> <1 x 10 x f32> {
'entry(%x: <1 x 784 x f32>, %w: <784 x 10 x f32>, %b: <1 x 10 x f32>):

%v0 = dot %x: <1 x 784 x f32>, %w: <784 x 10 x f32>
%v1 = add %v0: <1 x 10 x f32>, %b: <1 x 10 x f32>
return %v1: <1 x 10 x f32>

}

// Gradient of @foo with respect to all arguments
[gradient @foo]
func @foo_grad: (<1 x 784 x f32>, <784 x 10 x f32>, <1 x 10 x f32>)

-> (<1 x 784 x f32>, <784 x 10 x f32>, <1 x 10 x f32>)

// Gradient of @foo with respect to arguments 1 and 2
[gradient @foo wrt 1, 2]
func @foo_grad_2: (<1 x 784 x f32>, <784 x 10 x f32>, <1 x 10 x f32>)

-> (<784 x 10 x f32>, <1 x 10 x f32>)

// Gradient of @foo with respect to arguments 1 and 2
// Keeping original output 0
// Seedable, able to take back-propagated gradient as a seed for AD
[gradient @foo wrt 1, 2 keeping 0 seedable]
func @foo_grad_3:

(<1 x 784 x f32>, <784 x 10 x f32>, <1 x 10 x f32>, <1 x 10 x f32>)
-> (<784 x 10 x f32>, <1 x 10 x f32>, <1 x 10 x f32>)

Figure 4: Code in DLVM intermediate representation.
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