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Question

What can word distributions reveal about syntactic struc-
ture? How might human learners exploit this information?

Hypothesis

Unsupervised grammar induction (a machine-learning task)
can discover latent syntax in word distributions and quantify
(lower-bound) the learnability problem of natural language
syntax.

Problem

Existing grammar induction techniques [13, 12, 1, 10] do not
model (1) incremental left-corner parsing [5, 4, 7, 15] or (2)
limited working memory [9, 2, 16]. They might exploit infor-
mation unavailable to human learners.
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Our approach

Use a new memory-limited left-corner unsupervised hierar-
chical hidden Markov model (UHHMM) learner to discover
English syntax from child-directed speech [14]. No universal
grammar (cf. e.g. [3]) or semantic model (cf. e.g. [6]), which
allows us to test cue utility of word distributions alone.

System design

Structure: Depth-limited left-corner unsupervised hierar-
chichal hidden Markov model
Training: Batch Gibbs sampling
Data: Child-directed English speech (Eve [8])
Parameters: |A| = 4, |B| = 4, |P | = 8, depth = 2
Evaluation standard: CHILDES Treebank [11]

Bayesian UHHMM left-corner parser
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I gave the dog a bone.
a = label of active sign (being built)
b = label of awaited sign (needed to complete a)
p = part of speech
w = word (observed)
f = ‘fork’ decision (whether p completes b)
j = ‘join’ decision (whether bottom sign completes awaited
sign above it).

Gibbs sampling

Markov chain Monte Carlo sampling algorithm. Approximate
inference of true posterior (cf. variational Bayes — exact infer-
ence of approximate posterior, e.g. [10]). For each sentence,
computes posterior in a forward pass and samples parse in a
backward pass.

Procedure:
randomly initialize probability models
iteration := 1
while iteration < maxIteration

for sentence in data
compute posterior (forward pass)
sample from posterior (backward pass)

endfor
update models from sampled counts
iteration += 1

endwhile

UHHMM learning curves

UHHMM makes rapid early progress, but loses accuracy as it starts to consider more complex parses. Noun phrases are easier to
learn than verb phrases.

Actual parse examples
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UHHMM uses depth 2 to learn linguistically-plausible constructions like those above. These are given flat representation in the
gold trees, so our learner is not being rewarded for this insight.

Results

UHHMM (F1 = 62.47) performs on par with BMMM+DMV[1] (F1 = 63.82), a state-of-the-art competing system that does
not model working memory limitations or incremental left-corner parsing. Learning curves reveal rapid early progress toward
accurate parsing. UHHMM learns early to avoid center-embedding, then loses accuracy as it starts to seriously entertain center-
embedded parses. The system has a much easier time learning noun phrases than verb phrases (verb phrases have more variable
syntax). It also learns parts of speech, but not as well as a state-of-the-art unsupervised tagger (BMMM, V M = 64.45).

Conclusion

The system learns a lot of structure and makes linguistically interesting generalizations, but there is residue that may be difficult
to learn without additional guidance (semantics, universal grammar, etc.). Future work on cognitively-constrained grammar
induction may help resolve this question.
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