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Left-corner parsing: Fork decision

a

b

xt

No-fork (shift + match): Word satisfies b. a is complete.

a/b xt

a
b → xt . (–F)



Left-corner parsing: Fork decision

a

b

c

xt

Yes-fork (shift): Word does not satisfy b, fork off new complete category c.

a/b xt

a/b c
b

+
→ c ... ; c → xt . (+F)



Left-corner parsing: Join decision

a

b

c b ′

Yes-join (predict + match): Complete category c satisfies b while predicting b ′. Store
updates from 〈. . . , a/b , c〉 to 〈. . . , a/b ′〉.

a/b c
a/b ′

b → c b ′. (+J)



Left-corner parsing: Join decision

a

b
a′

c b ′

No-join (predict): Complete category c does not satisfy b. Predict new a′ and b ′ from c.
Store updates from 〈. . . , a/b , c〉 to 〈. . . , a/b , a′/b ′〉.

a/b c
a/b a′/b ′

b
+
→ a′ ... ; a′ → c b ′. (–J)
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Unsupervised sequence modeling of left-corner parsing

a1
t−1 b1

t−1
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t−1 b2

t−1
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t+1 b1

t+1
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t+1 b2

t+1

pt ft jt

wt

pt+1 ft+1 jt+1

wt+1

Graphical representation of probabilistic left-corner parsing model across two time steps, with
D = 2.
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+ Non-parametric (infinite) version described in paper. Parametric learner used in these
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Results: Comparison to other systems

P R F1

UPPARSE 60.50 51.96 55.90
CCL 64.70 53.47 58.55

BMMM+DMV 63.63 64.02 63.82
UHHMM 68.83 57.18 62.47

Random baseline (UHHMM 1st iter) 51.69 38.75 44.30

Unlabeled bracketing accuracy by system on Eve.



Results: UHHMM timecourse of acquisition

Log probability increases F-score decreases late Depth 2 frequency increases
late



Results: UHHMM uses of depth 2

+ Many uses of depth 2 are linguistically well-motivated.



Results: UHHMM uses of depth 2

Subject-auxiliary inversion: (c.f. Chomsky 1968)

ACT4

AWA2

AWA1

AWA4

AWA2

AWA1

AWA4

POS8

?
POS3

step

POS6

the

POS8

on

POS3

still

ACT4

POS1

rangy
POS7

is

POS8

,

POS2

oh



Results: UHHMM uses of depth 2

Ditransitive:

ACT1

AWA3

AWA1

AWA4

AWA4

POS8

.
POS3

one

POS6

another

ACT4

POS5

you
POS7

get

POS7

’ll

POS1

we



Results: UHHMM uses of depth 2

Contraction:

ACT4

POS8

?
ACT2

AWA2

AWA1

POS5

it
ACT1

POS5

n’t
POS7

is

POS8

,

ACT2

AWA4

AWA4

POS3

picture
POS6

pretty

POS6

a

ACT1

POS7

’s
POS1

that



Results: UHHMM uses of depth 2

+ All of these structures have flat representations in gold standard, so these insights are not
reflected in our accuracy scores.
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+ This suggests that distributional information can greatly assist syntax acquisition in a
human-like language learner, even without access to other important cues (e.g. world
knowledge).
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Thank you!

Github:
https://github.com/tmills/uhhmm/
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Appendix: Joint conditional probability

Variable Meaning
t position in the sequence

wt observed word at position t
D depth of the memory store at position t

q1..D
t stack of derivation fragments at t
ad

t active category at position t and depth 1 ≤ d ≤ D
bd

t awaited category at position t and depth 1 ≤ d ≤ D
ft fork decision at position t
jt join decision at position t
θ state x state transition matrix

Table 1: Variable definitions used in defining model probabilities.



Appendix: Joint conditional probability

P(q1..D
t wt | q1..D

1..t−1 w1..t−1) = P(q1..D
t wt | q1..D

t−1 ) (1)
def
= P(pt wt ft jt a1..D

t b1..D
t | q1..D

t−1 ) (2)

= PθP (pt | q1..D
t−1 ) ·

PθW (wt | q1..D
t−1 pt) ·

PθF (ft | q
1..D
t−1 pt wt) ·

PθJ(jt | q
1..D
t−1 pt wt ft) ·

PθA (a
1..D
t | q1..D

t−1 pt wt ft jt) ·

PθB (b
1..D
t | q1..D

t−1 pt wt ft jt a1..D
t ) (3)



Appendix: Part-of-speech model

PθP (pt | q1..D
t−1 )

def
= PθP (pt | d bd

t−1); d=max
d′
{qd′

t−1,q⊥} (4)



Appendix: Lexical model

PθW (wt | q1..D
t−1 pt)

def
= PθW (wt | pt) (5)



Appendix: Fork model

PθF (ft | q
1..D
t−1 pt wt)

def
= PθF (ft | d bd

t−1 pt); d=max
d′
{qd′

t−1,q⊥} (6)



Appendix: Join model

PθJ(jt | q
1..D
t−1 ft pt wt)

def
=

PθJ(jt | d ad
t−1 bd−1

t−1 ); d=maxd′{qd′
t−1,q⊥} if ft =0

PθJ(jt | d pt bd
t−1); d=maxd′{qd′

t−1,q⊥} if ft =1
(7)



Appendix: Active category model

PθA (a
1..D
t | q1..D

t−1 ft pt wt jt)
def
=

~a1..d−2
t =a1..d−2

t−1 � · ~ad−1
t =ad−1

t−1 � · ~ad+0..D
t =a⊥�; d=maxd′ {qd′

t−1,q⊥} if ft =0, jt =1
~a1..d−1

t =a1..d−1
t−1 � · PθA (a

d
t | d bd−1

t−1 ad
t−1) · ~a

d+1..D
t =a⊥�; d=maxd′ {qd′

t−1,q⊥} if ft =0, jt =0
~a1..d−1

t =a1..d−1
t−1 � · ~ad

t =ad
t−1� · ~ad+1..D

t =a⊥�; d=maxd′ {qd′
t−1,q⊥} if ft =1, jt =1

~a1..d−0
t =a1..d−0

t−1 � · PθA (a
d+1
t | d bd

t−1 pt) · ~ad+2..D
t =a⊥�; d=maxd′ {qd′

t−1,q⊥} if ft =1, jt =0

(8)



Appendix: Awaited category model

PθB (b
1..D
t | q1..D

t−1 ft pt wt jt a1..D
t )

def
=

~b1..d−2
t =b1..d−2

t−1 � · PθB (b
d−1
t | d bd−1

t−1 ad
t−1) · ~b

d+0..D
t =b⊥�; d=maxd′ {qd′

t−1,q⊥} if ft =0, jt =1
~b1..d−1

t =b1..d−1
t−1 � · PθB (b

d
t | d ad

t ad
t−1) · ~bd+1..D

t =b⊥�; d=maxd′ {qd′
t−1,q⊥} if ft =0, jt =0

~b1..d−1
t =b1..d−1

t−1 � · PθB (b
d
t | d bd

t−1 pt) · ~bd+1..D
t =b⊥�; d=maxd′ {qd′

t−1,q⊥} if ft =1, jt =1
~b1..d−0

t =b1..d−0
t−1 � · PθB (b

d+1
t | d ad+1

t pt) · ~bd+2..D
t =b⊥�; d=maxd′ {qd′

t−1,q⊥} if ft =1, jt =0

(9)



Appendix: Graphical model

a1
t−1 b1

t−1

a2
t−1 b2

t−1

a1
t b1

t

a2
t b2

t

a1
t+1 b1

t+1

a2
t+1 b2

t+1

pt ft jt

wt

pt+1 ft+1 jt+1

wt+1

Figure 1: Graphical representation of probabilistic left-corner parsing model expressed in
Equations 6–9 across two time steps, with D = 2.



Appendix: Punctuation

+ Punctuation poses a problem — keep or remove?
+ Remove: Doesn’t exist in input to human learners.
+ Keep: Might be proxy for intonational phrasal cues.

+ Punctuation was kept in training data in main result presented above.

+ We did an additional UHHMM run trained on data with punctuation removed (2000
iterations).
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Appendix: Results (without punctuation)

Figure 2: Log Probability (no
punc)

Figure 3: F-Score (no punc) Figure 4: Depth=2 Frequency (no
punc)



Appendix: Comparison by system (with and without punctuation)

With punc No punc
P R F1 P R F1

UPPARSE 60.50 51.96 55.90 38.17 48.38 42.67
CCL 64.70 53.47 58.55 56.87 47.69 51.88

BMMM+DMV (directed) 62.08 62.51 62.30 61.01 59.24 60.14
BMMM+DMV (undirected) 63.63 64.02 63.82 61.34 59.33 60.32

UHHMM-4000, binary 46.68 58.28 51.84 37.62 46.97 41.78
UHHMM-4000, flattened 68.83 57.18 62.47 61.78 45.52 52.42

Right-branching 68.73 85.81 76.33 68.73 85.81 76.33

Table 2: Parsing accuracy by system on Eve with and without punctuation (phrasal cues) in the input.
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