Multi-Source Translation Methods

Lane Schwartz lane@cs.umn.edu

University of Minnesota

23 Oct 2008

イロン イヨン イヨン イヨン

Related Work

Oracle Experiment

Revisiting Och and Ney (2001)

・ロン ・回と ・ヨン ・ヨン

Motivation

Principle of Translational Promiscuity:

If a document is translated into more than 1 language, it will likely be translated into many more languages.

Translate into first n target languages by hand

Translate into remaining target languages using MT

Motivation

Principle of Translational Promiscuity:

If a document is translated into more than 1 language, it will likely be translated into many more languages.

Translate into first n target languages by hand

Translate into remaining target languages using MT

||▲ 同 ト || 三 ト || (三 ト

Motivation

Principle of Translational Promiscuity:

If a document is translated into more than 1 language, it will likely be translated into many more languages.

- Translate into first n target languages by hand
- Translate into remaining target languages using MT

- 4 同 6 4 日 6 4 日 6

Related Work

Can using multiple sources of information improve translation?

- Lattice inputs
- Consensus decoding
- Hypothesis ranking

・ロン ・回と ・ヨン ・ヨン

Related Work

Can using multiple sources of information improve translation?

- Lattice inputs
- Consensus decoding
- Hypothesis ranking

・ロン ・回と ・ヨン・

Related Work

Can using multiple sources of information improve translation?

- Lattice inputs
- Consensus decoding
- Hypothesis ranking

イロト イヨト イヨト イヨト

Related Work

Can using multiple sources of information improve translation?

- Lattice inputs
- Consensus decoding
- Hypothesis ranking

Related Work

Can using multiple sources of information improve translation?

- Lattice inputs
- Consensus decoding
- Hypothesis ranking

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Related Work — Lattice Input

- Begin with alternate representations of a source sentence Chinese word segmentations Arabic morphological analyses
- Align alternate representations into a word lattice
- Use standard decoding algorithms, modified to accept lattice input (Dyer et al., 2008)
- Can be extended to accept multilingual inputs (ongoing work by Josh Schroeder)

- 4 同 6 4 日 6 4 日 6

Related Work — Lattice Input

- Begin with alternate representations of a source sentence Chinese word segmentations Arabic morphological analyses
- Align alternate representations into a word lattice
- Use standard decoding algorithms, modified to accept lattice input (Dyer et al., 2008)
- Can be extended to accept multilingual inputs (ongoing work by Josh Schroeder)

- 4 同 6 4 日 6 4 日 6

Related Work — Lattice Input

- Begin with alternate representations of a source sentence Chinese word segmentations Arabic morphological analyses
- Align alternate representations into a word lattice
- Use standard decoding algorithms, modified to accept lattice input (Dyer et al., 2008)
- Can be extended to accept multilingual inputs (ongoing work by Josh Schroeder)

・ 回 と ・ ヨ と ・ ヨ と

Related Work — Lattice Input

- Begin with alternate representations of a source sentence Chinese word segmentations Arabic morphological analyses
- Align alternate representations into a word lattice
- Use standard decoding algorithms, modified to accept lattice input (Dyer et al., 2008)
- Can be extended to accept multilingual inputs (ongoing work by Josh Schroeder)

・ 同 ト ・ ヨ ト ・ ヨ ト

Related Work — Lattice Input

- Begin with alternate representations of a source sentence Chinese word segmentations Arabic morphological analyses
- Align alternate representations into a word lattice
- Use standard decoding algorithms, modified to accept lattice input (Dyer et al., 2008)
- Can be extended to accept multilingual inputs (ongoing work by Josh Schroeder)

・ 同 ト ・ ヨ ト ・ ヨ ト

Related Work — Consensus Decoding

• Given a set of translations, find a *consensus* translation

- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - ▶ Align the *n* output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

・ロン ・回と ・ヨン・

Related Work — Consensus Decoding

- Given a set of translations, find a *consensus* translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the n output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

・ロン ・回と ・ヨン・

Related Work — Consensus Decoding

- Given a set of translations, find a *consensus* translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the *n* output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

・ロン ・回と ・ヨン ・ヨン

Related Work — Consensus Decoding

- Given a set of translations, find a *consensus* translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the n output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

・ロト ・回ト ・ヨト ・ヨト

Related Work — Consensus Decoding

- Given a set of translations, find a consensus translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the n output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - ▶ Japanese and Chinese into English
 - 4.8 BLEU improvement

・ロト ・回ト ・ヨト ・ヨト

Related Work — Consensus Decoding

- Given a set of translations, find a *consensus* translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the n output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

イロン イヨン イヨン イヨン

Related Work — Consensus Decoding

- Given a set of translations, find a *consensus* translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the n output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

・ 回 と ・ ヨ と ・ ヨ と

Related Work — Consensus Decoding

- Given a set of translations, find a *consensus* translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the n output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

(4回) (1日) (日)

Related Work — Consensus Decoding

- Given a set of translations, find a *consensus* translation
- Bilingual consensus decoding (Frederking and Nirenburg, 1994; Bangalore et al., 2001; Jayaraman and Lavie, 2005; Rosti et al., 2007)
 - Translate source text using n different systems
 - Align the n output hypotheses into a weighted word lattice
 - Intersect word lattice with n-gram language model
- Multilingual consensus decoding
 - Matusov et al. (2006)
 - Japanese and Chinese into English
 - 4.8 BLEU improvement

・ 同 ト ・ ヨ ト ・ ヨ ト

Related Work — Hypothesis Ranking

- Given a set of translations, find the *best* translation in the set
- Bilingual language model ranking (Kaki et al., 1999; Callison-Burch and Flourney, 2001)
- Multilingual translation model ranking (Och and Ney, 2001)
 - MAX
 ê = arg max_e{p(e) · max_n p(f_n|e)}
 Positive results reported combining up to 3 languages
 PROD
 - $\hat{e} = \arg \max_{e} \{ \rho(e) \cdot \prod_{n=1}^{N} \rho(f_n | e) \}$ Positive results reported combining up to 6 languages

・ロン ・回 と ・ ヨ と ・ ヨ と

Related Work — Hypothesis Ranking

- Given a set of translations, find the *best* translation in the set
- Bilingual language model ranking (Kaki et al., 1999; Callison-Burch and Flourney, 2001)
- Multilingual translation model ranking (Och and Ney, 2001)
 - ► MAX ê = arg max_e{p(e) · max_n p(f_n|e)} Positive results reported combining up to 3 languages ■ Positive
 - $\hat{e} = \arg\max_{e} \{p(e) \cdot \prod_{n=1}^{N} p(f_n|e)\}$

イロン イヨン イヨン イヨン

Related Work — Hypothesis Ranking

- Given a set of translations, find the *best* translation in the set
- Bilingual language model ranking (Kaki et al., 1999; Callison-Burch and Flourney, 2001)
- Multilingual translation model ranking (Och and Ney, 2001)

Related Work — Hypothesis Ranking

- Given a set of translations, find the *best* translation in the set
- Bilingual language model ranking (Kaki et al., 1999; Callison-Burch and Flourney, 2001)
- Multilingual translation model ranking (Och and Ney, 2001)
 - MAX

 ê = arg max_e{p(e) ⋅ max_n p(f_n|e)}
 Positive results reported combining up to 3 languages

 PROD

 ê = arg max_e{p(e) ⋅ ∏^N_{n=1} p(f_n|e)}
 Positive results reported combining up to 6 languages

・ロト ・回ト ・ヨト ・ヨト

Related Work — Hypothesis Ranking

- Given a set of translations, find the *best* translation in the set
- Bilingual language model ranking (Kaki et al., 1999; Callison-Burch and Flourney, 2001)
- Multilingual translation model ranking (Och and Ney, 2001)
 - MAX

 ê = arg max_e{p(e) · max_n p(f_n|e)}
 Positive results reported combining up to 3 languages

 PROD

 ê = arg max_e{p(e) · ∏^N_{n=1} p(f_n|e)}
 Positive results reported combining up to 6 languages

・ロト ・回ト ・ヨト ・ヨト

Related Work — Hypothesis Ranking

- Given a set of translations, find the *best* translation in the set
- Bilingual language model ranking (Kaki et al., 1999; Callison-Burch and Flourney, 2001)
- Multilingual translation model ranking (Och and Ney, 2001)
 - MAX

 ê = arg max_e{p(e) · max_n p(f_n|e)}
 Positive results reported combining up to 3 languages

 PROD

 ê = arg max_e{p(e) · ∏^N_{n=1} p(f_n|e)}
 Positive results reported combining up to 6 languages

Related Work — Hypothesis Ranking

- Given a set of translations, find the *best* translation in the set
- Bilingual language model ranking (Kaki et al., 1999; Callison-Burch and Flourney, 2001)
- Multilingual translation model ranking (Och and Ney, 2001)
 - MAX

 ê = arg max_e{p(e) · max_n p(f_n|e)}
 Positive results reported combining up to 3 languages

 PROD

 ê = arg max_e{p(e) · ∏^N_{n=1} p(f_n|e)}
 Positive results reported combining up to 6 languages

・ロン ・回と ・ヨン ・ヨン

Experiment — Hypothesis Ranking using an Oracle

- What are the maximum gains possible from hypothesis ranking?
- Oracle experiment choose hypothesis based on WER distance to the reference.

・ 同 ト ・ ヨ ト ・ ヨ ト

Experiment — Hypothesis Ranking using an Oracle

- What are the maximum gains possible from hypothesis ranking?
- Oracle experiment choose hypothesis based on WER distance to the reference.

・ 同 ト ・ ヨ ト ・ ヨ ト

Phrase-based bilingual systems

languages	BLEU	TER	METEOR
da-en	28.4	57.5	52.9
de-en	27.3	58.9	52.4
el-en	29.3	56.4	53.6
es-en	32.5	52.8	56.3
fi-en	24.6	62.1	50.4
fr-en	31.9	53.1	55.8
it-en	29.2	57.1	53.7
nl-en	25.7	62.7	50.4
pt-en	31.8	53.7	56.0
sv-en	32.7	52.3	56.6

Results of ten bilingual phrase based decoders into English. All systems were trained on Europarl v3. Test set is Europarl test05. Best results are bold.

Lane Schwartz lane@cs.umn.edu Multi-Source Translation Methods

Oracle BLEU scores

	da	de	el	es	fi	fr	it	nl	pt	SV
da	—	3.2	3.7	2.4	1.9	2.6	4.0	2.4	2.4	1.7
de			2.7	2.0	1.9	2.0	3.3	2.7	2.1	1.6
el				2.1	1.8	2.3	3.7	2.6	2.5	2.5
es				—	1.2	3.1	2.4	1.7	3.1	3.7
fi					—	1.0	1.9	2.7	1.1	0.6
fr						—	2.4	1.6	3.5	3.7
it								2.4	2.5	2.7
nl								—	1.8	1.3
pt										3.5
SV										—

Absolute change in BLEU after combining two languages using oracle compared with the best BLEU of either language individually.

▲圖▶ ▲屋▶ ▲屋▶

Oracle BLEU scores

- Oracle improvements ranged from 0.6 to 4.0 BLEU for two languages
- Much greater gains are seen when combining more languages

languages	BLEU	TER	METEOR
oracle-all	40.8	40.5	62.5

Combining ten systems results in 8.0 BLEU improvement over best bilingual system.

・ロト ・回ト ・ヨト ・ヨト

Oracle BLEU scores

- Oracle improvements ranged from 0.6 to 4.0 BLEU for two languages
- Much greater gains are seen when combining more languages

languages	BLEU	TER	METEOR
oracle-all	40.8	40.5	62.5

Combining ten systems results in **8.0 BLEU** improvement over best bilingual system.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Oracle All Systems

system	% selected
da-en	14.1
de-en	9.6
el-en	10.3
es-en	14.0
fi-en	4.0
fr-en	12.9
it-en	7.2
nl-en	5.5
pt-en	9.8
sv-en	12.9

Percentage of time that sentences from each system were selected in an All-English oracle WER experiment. Score for overall oracle output was 43.8 WER and 40.8 BLEU.

Max

 $\hat{e} = \arg \max_{e} \{ p(e) \cdot \max_{n} p(f_{n}|e) \}$

Positive results reported combining up to 3 languages

- ▶ All reported combinations using MAX had positive results
- No results reported for German-English or Finnish-English
- ▶ Test sentences were short (10-14 words)
- Conducted new experiment using larger Europarl corpus.
 - Experiment using Europarl (10 source languages)
 - Include longer sentences (average 29 words)

Max

- $\hat{e} = \arg \max_{e} \{ p(e) \cdot \max_{n} p(f_{n}|e) \}$
 - Positive results reported combining up to 3 languages
 - \blacktriangleright All reported combinations using MAX had positive results
 - No results reported for German-English or Finnish-English
 - ▶ Test sentences were short (10-14 words)
- Conducted new experiment using larger Europarl corpus.
 - Experiment using Europarl (10 source languages)
 - Include longer sentences (average 29 words)

Max

- $\hat{e} = \arg \max_{e} \{ p(e) \cdot \max_{n} p(f_{n}|e) \}$
 - Positive results reported combining up to 3 languages
 - All reported combinations using MAX had positive results
 - No results reported for German-English or Finnish-English
 - ▶ Test sentences were short (10-14 words)

Conducted new experiment using larger Europarl corpus.

- Experiment using Europarl (10 source languages)
- Include longer sentences (average 29 words)

Max

- $\hat{e} = \arg \max_{e} \{ p(e) \cdot \max_{n} p(f_{n}|e) \}$
 - Positive results reported combining up to 3 languages
 - \blacktriangleright All reported combinations using ${\rm MAX}$ had positive results
 - No results reported for German-English or Finnish-English
 - Test sentences were short (10-14 words)

Conducted new experiment using larger Europarl corpus.

- Experiment using Europarl (10 source languages)
- Include longer sentences (average 29 words)

Max

- $\hat{e} = \arg \max_{e} \{ p(e) \cdot \max_{n} p(f_{n}|e) \}$
 - Positive results reported combining up to 3 languages
 - \blacktriangleright All reported combinations using ${\rm MAX}$ had positive results
 - No results reported for German-English or Finnish-English
 - Test sentences were short (10-14 words)
- Conducted new experiment using larger Europarl corpus.
 - Experiment using Europarl (10 source languages)
 - Include longer sentences (average 29 words)

$\mathsf{Experiment} - \mathsf{MAX}$

	da	de	el	es	fi	fr	it	nl	pt	SV
da	—	0.4	0.1	-0.8	-1.3	-1.3	0.3	-1.4	-0.7	-1.6
de			-0.2	-0.6	-0.8	-2.0	-0.1	-0.8	-0.8	-1.1
el				-0.2	-1.8	-1.0	0.6	-1.9	-0.3	-0.5
es				—	-1.5	0.5	-0.9	-2.6	0.1	0.3
fi						-2.9	-1.3	-0.3	-1.9	-2.3
fr						_	-1.6	-3.7	0.2	0.2
it								-1.5	-1.0	-1.0
nl								—	-2.4	-2.9
pt									_	-0.1
SV										—

Absolute change in BLEU after combining two languages using MAx ranking method compared with the best BLEU of either language individually. Only 20% of MAx pairwise combinations led to an improvement in BLEU.

Lane Schwartz lane@cs.umn.edu

Prod

- $\hat{e} = \arg \max_{e} \{ p(e) \cdot \prod_{n=1}^{N} p(f_n|e) \}$
 - Positive results reported combining up to 6 languages
 - All but 2 reported combinations using PROD had positive results
 - No results reported for German-English or Finnish-English
 - Test sentences were short (10-14 words)

Attempted new experiment using larger Europarl corpus.

イロン イヨン イヨン イヨン

Prod

- $\hat{e} = \arg \max_{e} \{ p(e) \cdot \prod_{n=1}^{N} p(f_n|e) \}$
 - Positive results reported combining up to 6 languages
 - All but 2 reported combinations using PROD had positive results
 - No results reported for German-English or Finnish-English
 - Test sentences were short (10-14 words)

Attempted new experiment using larger Europarl corpus.

イロン イヨン イヨン イヨン

Constraint Decoding

 ${\rm PROD}$ requires each system to calculate a translation model probability for the output hypotheses of every system.

n systems each produce one target hypothesis

•
$$\hat{e} = \arg \max_{e} \{ p(e) \cdot \prod_{n=1}^{N} p(f_n | e) \}$$

• Each system must calculate $p(f_n|e)$ for all *n* target hypotheses.

	da-en	de-en	es-en	fr-en
% reachable	10.5	9.8	11.5	10.6

Percentage of sentences reachable by the Swedish-English system when constrained by the output of the listed systems.

Constraint Decoding

 ${\rm PROD}$ requires each system to calculate a translation model probability for the output hypotheses of every system.

n systems each produce one target hypothesis

•
$$\hat{e} = \arg \max_{e} \{ p(e) \cdot \prod_{n=1}^{N} p(f_n | e) \}$$

• Each system must calculate $p(f_n|e)$ for all *n* target hypotheses.

	da-en	de-en	es-en	fr-en
% reachable	10.5	9.8	11.5	10.6

Percentage of sentences reachable by the Swedish-English system when constrained by the output of the listed systems.

- 4 同 6 4 日 6 4 日 6

Conclusions

- Hypothesis ranking has the potential to produce large improvements in translation quality
- $\blacktriangleright\ {\rm MAX}$ does not consistently produce positive results
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages
 - New results show only 20% of MAX pairwise combinations led to an improvement in BLEU.
- ▶ Unable to replicate PROD
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages

(ロ) (同) (E) (E) (E)

Conclusions

- Hypothesis ranking has the potential to produce large improvements in translation quality
- $\blacktriangleright\,\,\mathrm{Max}$ does not consistently produce positive results
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages
 - New results show only 20% of MAX pairwise combinations led to an improvement in BLEU.
- ▶ Unable to replicate PROD
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages

イロト イヨト イヨト イヨト

Conclusions

- Hypothesis ranking has the potential to produce large improvements in translation quality
- MAX does not consistently produce positive results
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages
 - New results show only 20% of MAX pairwise combinations led to an improvement in BLEU.
- Unable to replicate PROD
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages

イロト イヨト イヨト イヨト

Conclusions

- Hypothesis ranking has the potential to produce large improvements in translation quality
- MAX does not consistently produce positive results
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages
 - New results show only 20% of MAX pairwise combinations led to an improvement in BLEU.
- Unable to replicate PROD
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages

イロト イヨト イヨト イヨト

Conclusions

- Hypothesis ranking has the potential to produce large improvements in translation quality
- MAX does not consistently produce positive results
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages
 - ▶ New results show only 20% of MAX pairwise combinations led to an improvement in BLEU.

▶ Unable to replicate PROD

 Och and Ney (2001) reported consistent positive results for up to 3 source languages

イロン イヨン イヨン イヨン

Conclusions

- Hypothesis ranking has the potential to produce large improvements in translation quality
- $\blacktriangleright\,\,\mathrm{Max}$ does not consistently produce positive results
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages
 - ▶ New results show only 20% of MAX pairwise combinations led to an improvement in BLEU.
- ▶ Unable to replicate PROD
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages

イロト イヨト イヨト イヨト

Conclusions

- Hypothesis ranking has the potential to produce large improvements in translation quality
- $\blacktriangleright\,\,\mathrm{Max}$ does not consistently produce positive results
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages
 - ▶ New results show only 20% of MAX pairwise combinations led to an improvement in BLEU.
- Unable to replicate PROD
 - Och and Ney (2001) reported consistent positive results for up to 3 source languages

- 4 回 2 - 4 □ 2 - 4 □

Future Work

► Approximate translation model probabilities for PROD

- Incorporate system weighting
- Multilingual consensus decoding
- Multilingual lattice inputs
- Multi-synchronous decoding algorithms

(4回) (4回) (日)

Future Work

- Approximate translation model probabilities for PROD
- Incorporate system weighting
- Multilingual consensus decoding
- Multilingual lattice inputs
- Multi-synchronous decoding algorithms

(4回) (4回) (日)

Future Work

- Approximate translation model probabilities for PROD
- Incorporate system weighting
- Multilingual consensus decoding
- Multilingual lattice inputs
- Multi-synchronous decoding algorithms

(4回) (4回) (日)

Future Work

- Approximate translation model probabilities for PROD
- Incorporate system weighting
- Multilingual consensus decoding
- Multilingual lattice inputs
- Multi-synchronous decoding algorithms

★ E ► ★ E ►

æ

< - 17 → 1

Future Work

- Approximate translation model probabilities for PROD
- Incorporate system weighting
- Multilingual consensus decoding
- Multilingual lattice inputs
- Multi-synchronous decoding algorithms

★ 문 ► < 문 ►</p>

A ■

Thank you!

Mahalo!

Lane Schwartz lane@cs.umn.edu Multi-Source Translation Methods

回 と く ヨ と く ヨ と