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Akeqiinga malighqutaqnalunga tuqlughaasiiniun America-m ama
nunganun nekevghaviganun ataasiq nunaghllak asingani
Kiyaghneghem, ilemngalghii ilakutelleq ama ataasiighngalghhi
tamaghhaanun.
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7,000,000,000 people
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8 languages with at least 100 million speakers
85 languages with at least 10 million speakers
389 languages with at least 1 million speakers

6632 languages with at least 1 speaker
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O Canada! Ô Canada!
Our home and native land! Terre de nos äıeux,
True patriot love Ton front est ceint

in all thy sons command. de fleurons glorieux!
With glowing hearts we see thee rise, Car ton bras sait porter l’épée,
The True North strong and free! Il sait porter la croix!
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Rule-Based Machine Translation

Direct surface-level translation
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Machine Translation Insights — Warren Weaver

“One naturally wonders if the problem of
translation could conceivably be treated
as a problem in cryptography.”
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Machine Translation Insights — Warren Weaver

“When I look at an article in Russian,
I say ‘This is really written in English,
but it has been coded in some strange
symbols. I will now proceed to decode.”
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Statistical Machine Translation
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Translation Model — P(f | e)
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Translation Model — P(f | e)

Statistics + Syntactic Rules in the Translation Model
Abeillé et al., 1990; Poutsma, 1998; Poutsma, 2000; Yamada & Knight, 2001;
Yamada & Knight, 2002; Eisner, 2003; Gildea, 2003; Hearne & Way, 2003;
Poutsma, 2003; Imamura et al., 2004; Galley et al., 2004; Graehl & Knight,
2004; Melamed, 2004; Ding & Palmer, 2005; Hearne, 2005; Quirk et al., 2005;
Cowan et al., 2006; Galley et al., 2006; Huang et al., 2006; Liu et al., 2006;
Marcu et al., 2006; Zollmann & Venugopal, 2006; Bod, 2007; DeNeefe et al.,
2007; Liu et al., 2007; Chiang et al., 2008; Lavie et al., 2008; Mi & Huang,
2008; Mi et al., 2008; Resnik, 2008; Shen et al., 2008; Zhou et al., 2008;
Chiang, 2009; Hanneman & Lavie, 2009; Liu et al., 2009; Chiang, 2010; Huang
& Mi, 2010;
. . .
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Language Model — P(e)

Phrase-based Machine Translation

Linguistically naive
Most commonly-used statistical machine translation method
Outperforms syntactic TM systems for many language pairs

Statistics + Syntactic Rules in the Language Model

Novel contribution of this work:

Technique for using any generative incremental parser as a
syntactic language model
Incorporate our incremental syntactic language model into
phrase-based machine translation
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Language Model — P(e)

Estimate n-gram Language Model

P(en | e1 . . . en−1) =
C(e1...en)

C(e1...en−1)

In other words , an n-gram language model tries to predict the
next word in a sequence of words .

Widely used in speech recognition & machine translation

Can be trained on a corpus of monolingual data

Variety of backoff and smoothing techniques
to account for words not encountered during training
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Phrase-Based Translation
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Der Präsident trifft am Freitag den Vorstand
The president meets the board on Friday

Stack 0

ÀÁÂÃÄÅÆ

〈s〉
ÊÁÂÃÄÅÆ

〈s〉 the

ÊÁÂÃÄÅÆ

〈s〉 that

ÀËÂÃÄÅÆ

〈s〉 president

Stack 1

ÊËÂÃÄÅÆ

the president

ÊËÂÃÄÅÆ

that president

ÀËÂÍÄÅÆ

president Friday

Stack 2

ÊËÌÃÄÅÆ

president meets

ÊËÌÃÄÅÆ

Obama met

Stack 3



Phrase-Based Translation
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Definition

τ̃ th represents parses of the partial translation at node h in stack t
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Parsing

The president meets the board on Friday.
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Parsing

Bottom-up parsing requires entire sentence

DT
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Incremental Parsing

Humans hear language incrementally

Humans process language incrementally

Incremental parsers have nice pyscholinguistic properties

Incremental parsers can process partial sentences
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Incremental Parsing

Spoken language interfaces (Schwartz et al, 2009)

Handling realistic disfluent spoken input (Miller et al, 2009)

Modelling reading time (Wu et al, 2010)

Coreference resolution (ongoing)
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Our work presents a novel mechanism for incorporating syntax into
the language model of phrase-based machine translation
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Evaluation

How do we know if the syntactic language model is good?

BLEU

Perplexity

Manual
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Evaluation — BLEU

Experiment

NIST OpenMT 2008 Urdu-English data set

Moses with standard phrase-based translation model

Tuning and testing restricted to sentences ≤ 40 words long

Results reported on devtest set

n-gram LM is WSJ 5-gram LM

BLEU

Modified precision metric for assessing translation quality

Measures n-gram matches against reference translations

Does not measure syntactic well-formedness
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Evaluation — BLEU

BLEU

Modified precision metric for assessing translation quality

Measures n-gram matches against reference translations

Higher BLEU scores are better

Does not measure syntactic well-formedness

Moses LM(s) reordering limit=10 reordering limit=20

n-gram only 21.67 21.88

HHMM + n-gram 21.44 21.93

Motivation Machine Translation Incremental Parsing Integration Results

An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation Lane Schwartz



Evaluation — BLEU

BLEU

Modified precision metric for assessing translation quality

Measures n-gram matches against reference translations

Higher BLEU scores are better

Does not measure syntactic well-formedness

Moses LM(s) reordering limit=10 reordering limit=20

n-gram only 21.67 21.88

HHMM + n-gram 21.44 21.93

Motivation Machine Translation Incremental Parsing Integration Results

An Incremental Syntactic Language Model for Statistical Phrase-based Machine Translation Lane Schwartz



Evaluation — Perplexity

Perplexity

Standard measure of language model quality

Reports how surprised a model is by test data

Lower perplexity is better

Calculated using log base b for a test set of T tokens.

ppl = b
−logbP(e1...eT )

T
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Evaluation — Perplexity

Language models trained on WSJ Treebank corpus

LM In-domain
Perplexity

Out-of-domain
Perplexity

WSJ 5-gram LM 232 1262
WSJ Syntactic LM 385 529

Interpolated
WSJ 5-gram + WSJ SynLM

209

Gigaword 5-gram 258 312
Interpolated
Gigaword 5-gram + WSJ SynLM

222 123
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Perplexity
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Evaluation — Perplexity

Language models trained on WSJ Treebank corpus
...and n-gram model for larger English Gigaword corpus.

LM In-domain
Perplexity

Out-of-domain
Perplexity

WSJ 5-gram LM 232 1262
WSJ Syntactic LM 385 529
Interpolated
WSJ 5-gram + WSJ SynLM

209 225

Gigaword 5-gram 258 312
Interpolated
Gigaword 5-gram + WSJ SynLM

222 123
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Evaluation — Manual

Manual Examination

Actually look at the translations

Gold standard for measuring quality

Assess syntactic well-formedness
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Evaluation — Manual
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Evaluation — Manual
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Conclusion

Many others have incorporated syntax into translation model

Phrase-based machine translation uses a syntactically naive
translation model

Our work presents a novel mechanism for incorporating syntax
into the language model

Use any generative incremental parser as syntactic language
model

Straightforward and natural mechanism for integrating syntax
into phrase-based machine translation
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Thanks

Thank you!
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Incremental Parser as Syntactic LM Feature
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ê = argmax
e

exp
∑
j
λjhj(e,f)

λ = Set of j feature weights

h =


Phrase-based translation model
n-gram LM
Distortion model
...
Syntactic LM P(τ̃ th)



Results — Manual Examination
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