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Abstract

We present an open source translation system
that provides a clean-room implementation of
the hierarchical phrase-based statistical trans-
lation model introduced in (Chiang, 2005) and
refined in (Chiang, 2007). To our knowledge
this is the first freely available hierarchical
phrase-based translation system which imple-
ments cube pruning. We introduce extensions
to (Chiang, 2007) to take advantage of multi-
ple source languages.

1 Introduction

While the area of statistical machine translation is
very active, there are few generally available tools
available to researchers, and even fewer open-source
tools. For researchers specifically interested in hier-
archical phrase-based statistical translation methods,
there is no freely available implementation of Chi-
ang (2007) on which to build. In this paper we pro-
vide a brief overview of existing tools, and present
the first freely available hierarchical phrase-based
statistical translation tool which implements cube-
pruning. Finally, we introduce a new technique for
improving translation results when multiple source
languages are available.

Moses (Koehn et al., 2007) and Phramer
(Olteanu et al., 2006) provide open-source re-
implementations of the non-hierarchical phrase-
based Pharaoh system (Koehn, 2004). Zollmann and
Venugopal (2006) present an open source syntax-
augmented hierarchical phrase-based system written
in C++; their system includes a Chiang (2005) com-
patibility mode, but does not implement cube prun-
ing (Chiang, 2007). Hiero, the system presented in

Chiang (2007), is a hierarchical phrase-based system
which implements cube pruning, but is not generally
available and is not open source. Cubit (Huang and
Chiang, 2007) is an open source reference imple-
mentation of just the cube pruning algorithm which
requires a separately trained Pharaoh-style phrase
table.

Our system is a clean-room implementation
of the hierarchical phrase-based statistical trans-
lation model introduced in Chiang (2005) and
refined in Chiang (2007). The system imple-
ments all three language model integration tech-
niques from Chiang (2007), including cube prun-
ing. This system is implemented in Java, and was
designed to be easily extended. The software is
released under the GNU General Public License
(GPL); code and documentation are available at
http://sf.net/projects/nlp-parsers.

The remainder of this paper is structured as fol-
lows. Section 2 briefly reviews the hierarchical
translation model originally presented in Chiang
(2007). Section 3 describes how decoders which im-
plement this model can produce n-best lists of trans-
lations, using the framework introduced in Huang
and Chiang (2005). Finally, section 4 presents on-
going research which extends this model by using
multiple source languages when translating.

2 Model

Our model is trained on a sentence-aligned parallel
corpus. Word alignments are extracted for each par-
allel sentence in the corpus using GIZA++ (Och and
Ney, 2000) and refined using the “final-and” method
of Koehn et al. (2003).

Following Chiang (2007), our model is a
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Figure 1: Log-linear features

weighted synchronous context-free grammar where
the only nonterminals are X, S, and S′. X is by
far the most prevalent nonterminal in the grammar;
synchronous context-free rules of the formX →
〈γ, α,∼〉 are extracted automatically from the word-
aligned sentence pairs, following the process and re-
strictions of Chiang (2005). In addition to the ex-
tracted rules, the grammar includes the following
rules used to combine sub-translations:

S → 〈S①X②, S①X②〉 (1)

S → 〈X①, X①〉 (2)

S′ → 〈S①, 〈s〉 S①〈/s〉〉 (3)

The nonterminal S represents the left-hand side of
the two glue rules, (1) and (2), which which can be
used to combine partial translations serially rather
than hierarchically. S′ is the start symbol; rule (3) is
used to enclose a complete translation S with begin-
ning and end of sentence tags.

The weight of an extracted synchronous context-
free rule is defined as a log-linear combination of
weighted features:

w(X → 〈γ, α〉) =
∑

i

φi(X → 〈γ, α〉) × λi (4)

We use the feature set defined in Chiang (2005),
listed in figure 1. We estimate the rule-specific fea-
ture valuesφ for each rule using relative frequency
estimation. Each log-linear feature has a corre-
sponding weightλ. All feature values are in log
domain. Rules (2) and (3) are each defined to have
log-domain weight of zero. The log-domain weight
of glue rule (1) is defined to be−λglue.

Given a set of synchronous context-free rules, our
decoder uses a variant CKY algorithm to parse in-
put sentences. The parse chart then represents a
shared forest of all possible translations that the de-
coder could produce from the rule set. Each com-
plete derivation in the parse chart represents a parse

tree from that shared forest. The weight of a deriva-
tion is the sum of the weights for each rule used in
the derivation:

w(D) =
∑

r∈D

w(r) (5)

The best derivation is obtained by simply select-
ing the derivation with the highest weight, of those
derivations which completely span the source lan-
guage input:

D̂ = arg max
D

w(D) (6)

Because our rules are synchronous, during pars-
ing we must store the target language right-hand side
of each rule as it is applied. The target language
translation for a given derivation can then be ex-
tracted by tracing through the rule applications used
to construct a derivation.

3 Training

The model above requires meaningful log-linear fea-
ture weights. The quality of translations resulting
from the decoder is highly dependent on the log-
linear feature weights. Meaningful feature weights
can be obtained by performing minimum error rate
training (Och, 2003). Minimum error rate training
attempts to optimize the BLEU score of a develop-
ment set of sentences by tuning the log-linear feature
weights of the model.

The minimum error rate training process requires
that the decoder be capable of producing an n-best
list of translations for each input sentence. Huang
and Chiang (2005) show how an n-best list of deriva-
tions can be obtained from a weighted, directed hy-
pergraph. By organizing our parse chart as a hyper-
graph, we are able to use the efficient algorithm 2 of
Huang and Chiang (2005) to extract an n-best list of
translations for each source sentence.

We therefore view the parse chart produced by our
decoder as a weighted, directed hypergraph. Each
chart cell entry is a vertex in the hypergraph. Ver-
tices are connected via hyperarcs, where each hy-
perarc corresponds to a rule application. The weight
of a hyperarc is the weight of the rule associated
with that hyperarc, plus the weights of the tail ver-
tices of the hyperarc. The weight of a vertex node is
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Figure 2: Sample parse chart viewed as a hypergraph. Each node in the hypergraph corresponds to a chart cell entry in
the parse chart. Each hyperarc corresponds to a single rule application in the parse chart. The head node of a hyperarc
is the left-hand side of the rule associated with the rule application. The tail nodes of the hyperarc are the elements of
the source language right-hand for that rule. Note that a given node may have potentially many hyperarcs for which
that node is the head.

the weight of the highest-weighted hyperarc headed
at that vertex. In order to allow a translation to be
extracted from a derivation, we store the target lan-
guage right-hand side in the relevant hyperarc when-
ever we apply a rule in the parse chart. Figure 2
shows an example parse chart for a short sentence
viewed as a hypergraph.

When considering a given span during parsing,
there may be many rules with the same source lan-
guage right-hand side, but different target language
right-hand sides. In such cases, each rule will be
applied separately, resulting in numerous hyperarcs
with the same head and same tail nodes, but with
different target language right-hand sides stored in
each hyperarc. Figure 3 shows a simple partial hy-
pergraph to illustrate this phenomenon.

Once feature values are calculated for each rule,

we train feature weights for our system using min-
imum error rate training, using the open source
MERT implementation presented in Olteanu et al.
(2006). Minimum error rate training attempts to op-
timize the BLEU score of a development set of sen-
tences by tuning the log-linear feature weights of the
model.

We present the above implementation in the hope
that such a freely available system may help stimu-
late further research. We now briefly introduce our
ongoing research based on this system.

4 Translation using multiple source
languages

Nearly all existing machine translation techniques
assume a single source language and a single tar-
get language. However, governments and large busi-
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Figure 3: Partial hypergraph showing an portion of
the parse chart from figure 2. This figure shows that
there may be multiple hyperarcs with the same span,
same head, and same tail nodes. Because each hy-
perarc corresponds to a single rule application in the
parse chart, each hyperarc has a target language string
associated with it that corresponds to the target lan-
guage right-hand side of the rule application. In
this example, hyperarc A represents an application of
rule X → 〈wiederaufnahme X①, resumption X①〉 and
hyperarc B represents an application of ruleX →
〈wiederaufnahme X①, restarting X①〉. In real parse
charts it is very common for an X node to have a large
number of outgoing hyperarcs.

nesses often encounter situations where documents
must be translated into a large number of languages.
The proceedings of the European Union parliament
is one notable example. In such situations, machine
translation systems which take advantage of multi-
lingual resources may be of use. Using relatively
few resources, source documents can be manually
translated from a single source into a small number
of target languages, effectively resulting in multiple
synchronous source languages for each document to
be translated.

Our system exploits this multiplicity of source
languages by training a translation model for each
source-target language pair. When decoding a given
sentence, we begin with the sentence, in original
source languagef1. The original source sentence
is manually or semi-automatically translated from
f1 into a small number of pseudo-source languages,
f2 . . . fn. Now, the modeling task becomes:

arg max
e

P (e | f1, f2, . . . , fn) =

arg max
e,x

P (e | fx) (7)

We take the straightforward strategy of choos-
ing the translation with the highest probability from
any of the available sources. This approach is mo-
tivated by the observation that different language
pairs present different ambiguities under different
conditions. By starting with the same sentence in
multiple source languages, it may be possible to find
a better translation than if only one language pair is
considered.

We translate from each source languagef1 and
pseudo-source languagef2 . . . fn into a common
target languagee, using our decoder and the appro-
priate source-target translation model. We would
like our system to simply choose the translation with
the highest score as the final result. But, because the
log-linear scores produced by the decoder are not di-
rectly comparable, we must first normalize the score
of each translation by the inside probability of the
relevant parse tree.

A translation or partial translation can be uniquely
identified in a parse tree by a chart cell entrynode
and a rule applicationarc rooted atnode. The inside
probability,β, of a subtree is defined as the proba-
bility of a (partial) translation:

P (arc) = exp(w(arc)) (8)

β(arc) = P (arc)
∏

node ∈

tail(arc)

β(node) (9)

β(node) =
∑

arc ∈

bs(node)

β(arc) (10)

β(nodeterm) = 1 (11)

Given a rule applicationarc that spans the entire
parse tree, and the corresponding chart cell entry
node at whicharc is rooted, the probability of the
corresponding translation can be defined in terms of
the weight ofarc and the inside probability ofnode:

P (node) =
exp(w(arc))

β(node)
(12)



The normalized probabilities of each translation
can now be compared. The translation with the high-
est probability is selected as the final result.

Our current research applies this technique to the
highly multi-lingual Europarl corpus (Koehn, 2005).
We expect this will yield consistently higher scores
than the Chiang (2007) baseline, as the best transla-
tion can be chosen from among multiple decoders.

5 Conclusion

Statistical hierarchical phrase-based translation is an
active and very promising area of research. This pa-
per introduces the first freely available implementa-
tion of such a translation system which also imple-
ments the cube pruning language model integration
technique.

Governments and large businesses often en-
counter situations where documents must be trans-
lated into a large number of languages. In such sit-
uations, the use of translation techniques which ex-
ploit multiple parallel source languages may be able
to improve the quality of translation results.
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