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ABSTRACT

Spoken language interfaces based on interactive semantic
language models [16, 14] allow probabilities for hypothe-
sized words to be conditioned on the semantic interpretation
of these words in the context of some interfaced application
environment. This conditioning may allow users to avoid
recognition errors in an intuitive way, by adding extra, pos-
sibly redundant description. This paper evaluates the effect
on error reduction of redundant descriptions in an interac-
tive semantic language model. In order to evaluate the effect
in natural use, the model is run on rich domains, supporting
references to sets of individuals (instead of just individuals
themselves) arranged in multiple continuous dimensions (a
2-D floorplan scene). Results of these experiments suggest
that an interactive semantic language model allows users to
achieve significantly higher recognition accuracy by provid-
ing additional redundant spoken description.

INTRODUCTION

Recognition accuracy remains a limiting factor in spoken
language interfaces, particularly for content-creation appli-
cations such as organizers, reminder systems, or immersive
design applications, in which new entities are introduced and
named by users. This is because most speech recognizers es-
timate probabilities for hypothesized words using word co-
occurrence statistics derived from fixed corpora, which nat-
urally will not include names or novel words introduced by
users.

Psycholinguistic studies [15] suggest human language pro-
cessing bases its hypotheses not only on past word fre-
quencies, but also on referential semantic information about
likely referents for spoken descriptions. For example, a
directive like select the diff file in the eval folder will be
very likely to be recognized if there is known to be such
a file in such a folder. Experiments on language models
that allow recognition to interact with semantic interpreta-
tion in this way [16, 14] show them to be more accurate than
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syntax-only models or trigram word co-occurrence models
compiled from referential semantic information in simulated
content-creation applications.

This paper explores whether interactive models1 can addi-
tionally allow users to improve recognition by adding redun-
dant descriptions (e.g. directing the system to select the diff
file in the eval folder when there is only one diff file any-
where).

Implicit in the standard word error rate statistic used in eval-
uating speech recognition systems is the assumption that
recognition errors occur on a word-by-word basis. In fact,
the independence assumptions in most word co-occurrence
based speech recognizers means that word choice – and
therefore word error – are indeed defined by a function on
individual words in some local context of preceding words,
so that the total number of errors and the overall sentence
error rate (the percent of sentences with no word errors) will
naturally increase as sentence length increases. Results us-
ing an interactive semantic interface, however, indicate that
users can indeed significantly decrease sentence error rate
by using redundant descriptions.

Even more encouragingly, interviews with test subjects sug-
gest that the process of selecting redundant descriptions was
conscious — even strategic: if the redundant phrase fol-
lowed a non-redundant description that resulted in an er-
ror, subjects typically chose redundant descriptions that ex-
cluded the erroneous selection.

The remainder of this paper is organized as follows: The
background section describes a basic implementation of
an interactive semantic language model as an HMM-like
probabilistic time-series model. The following section ex-
plores related work in interactive speech interfaces. The
next section describes how this model was extended to two-
dimensional scenes, allowing references to sets of individu-
als with continuous-valued attributes. The section after that
gives results showing that the model can be ported to rich
domains (in which redundancy is likely to be more natu-
ral) without substantial loss of recognition speed or accu-

1The term ‘interactive model’ [7] refers to a model in which se-
mantics and the state of the world interact with other components
to influence the recognition process. This contrasts with other pos-
sible uses of the term, where (for example) an interactive system
could request additional clarifying information from the user.



racy. The following two sections describe how this model
was used to evaluate the effects of redundant descriptions in
a simulated design application.

RELATED WORK

Most existing spoken language interface architectures rely
on off-the-shelf speech decoding strategies developed for
tasks like dictation or database querying, with mostly fixed
vocabularies and plentiful training corpora. The approach
used in this paper employs a speech decoding strategy –
namely, an interactive semantic language model – designed
especially for custom interface tasks in which vocabularies
are user-defined and training corpora are scarce, but world
model information is readily available.

It is also not uncommon for spoken language interfaces
to employ context-sensitive language models that are pre-
compiled for particular discourse or environment states, and
swapped out between utterances [6, 2]. But to approach hu-
man levels of recognition accuracy, spoken language inter-
faces will also need to exploit context continuously during
utterance recognition, not just between utterances [16]. The
approach used in this paper can be described as continuously
context-sensitive.

Similar interfaces have been proposed that perform refer-
ential semantics continuously during speech decoding for
the purpose of improving the accuracy of human-robot in-
terfaces [12]. But these lack a linguistically rich semantic
framework permitting complex nested references, and have
not been scaled to abstract environments or concrete en-
vironments larger than a few dozen objects on a tabletop.
Other approaches [3, 1] have sophisticated sensitivity to ref-
erential context, but are not defined to integrate efficiently
into the speech decoding process. The approach used in this
paper is able to exploit arbitrarily large environments,both
concrete and abstract, including complex conditional pro-
gram scripts, in order to improve recognition accuracy dur-
ing real-time speech decoding.

BACKGROUND: INTERACTIVE SEMANTIC LANGUAGE

MODEL

The model used in this paper is a factored Hidden Markov
Model (HMM). HMMs characterize speech or text as se-
quences of hidden states st (in this case, stacked-up syntactic
categories and referents) and observed states ot (in this case,
10ms frames of audio input) at corresponding time steps t.
A most likely sequence of hidden states ŝ1..T can then be hy-
pothesized given any sequence of observed states o1..T , us-
ing Bayes’ Law (Equation 2) and Markov independence as-
sumptions (Equation 3) to define a full P(s1..T | o1..T ) prob-
ability as the product of a Transition Model (ΘA) probabil-

ity P(s1..T )
def
=

∏

t PΘA
(st | st−1) and an Observation Model

(ΘB) probability P(o1..T | s1..T )
def
=

∏

t PΘB
(ot | st):

ŝ1..T = argmax
s1..T

P(s1..T | o1..T ) (1)

= argmax
s1..T

P(s1..T ) · P(o1..T | s1..T ) (2)

def
= argmax

s1..T

T
∏

t=1

PΘA
(st | st−1) · PΘB

(ot | st) (3)

This basic HMM framework is then extended to a Hierar-
chic Hidden Markov Model (HHMM) [9] in order to in-
corporate syntactic and semantic recursion into this pro-
cess. This model first divides ΘA transitions into two phases
(Equation 4): a ‘reduce’ phase (resulting in an intermedi-
ate state rt, which is marginalized or summed out), and a
‘shift’ phase (resulting in a modeled state st). These phases
are then factored into hierarchies of depth-specific variables
r1
t ...rD

t and s1
t ...s

D
t at each time step (Equation 5):

PΘA
(st | st−1) =

∑

rt

P(rt | st−1) · P(st | rt st−1) (4)

def
=

∑

r1..D

t

D
∏

d=1

PΘR
(rd

t | r
d+1
t sd

t−1 sd−1
t−1 )

·PΘS
(sd

t | r
d+1
t rd

t sd
t−1 sd−1

t ) (5)

with rD+1
t and s0

t defined as constants. In Viterbi decoding,
the sums are replaced with argmax operators in order to ex-
tract a most likely sequence hypothesis.

In an ordinary HHMM, shift and reduce probabilities are
defined in terms of finitely recursive Finite State Automata
(FSAs) with probability distributions over transition, recur-
sive expansion, and final-state status of states at each hierar-
chy level. Each intermediate variable is a boolean variable
over final-state status frd

t

∈ {0,1} and each modeled state

variable is a syntactic, lexical, or phonetic state qsd

t

.

Syntactic states

Figure 1 shows a sample HHMM hypothesis for the sen-
tence select the diff in the eval folder. In the interactive
semantic model described in this paper, the syntactic states
(qsd

t

) at each depth and time step are derived from a context-

free grammar, annotated with relation labels (such as IN or
FOLDER) at the beginning and end of each expansion. The
example in Figure 1 is derived from the following gram-
mar G:

S ¢ (SELECT) select NP (SELECT
′)

NP ¢ NP PP

NP ¢ the N

N ¢ (DIFF) diff

N ¢ (FOLDER) folder

N ¢ (EVAL) eval N

PP ¢ (IN) in NP (IN
′)

This grammar may be augmented by the user through the in-
terface, for example by adding nouns to describe newly cre-
ated classes of objects. After every such addition, the gram-
mar is compiled using a right-corner transform [5, 13] into
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Figure 1. Bounded recursive state transitions among states derived from the following grammar (relations in parentheses): S ¢ (SELECT) select NP
(SELECT′), NP ¢ NP PP, NP ¢ the N, N ¢ (DIFF) diff, N ¢ (FOLDER) folder, N ¢ (EVAL) eval N, PP ¢ (IN) in NP (IN′). Solid lines indicate allowable

transitions. Dashed lines indicate allowable recursive expansions or reductions. Reduce states — syntactic states without syntactic symbols following
the slash — are shown for completeness, but are not explicitly calculated during the reduce phase.

a set of state transitions over states of the form α/β γ ...,
defining incomplete instances of categories α lacking in-
stances of categories β, γ, ... yet to come. This transform
defines within-level transition and cross-level expansion op-
erations in a syntactic state model ΘQ. In particular, this
transform is designed to ‘unroll’ head or tail recursion of
rules in an input grammar G as much as possible into transi-
tions within a single stack level. This within-level recursion
allows rich syntactic constructions to be recognized within
the bounded memory store of an HHMM.2

The transitions and expansions allowed by ΘQ are defined as
follows:

• Within-level tail recursion (a rightward transition in ΘQ)
is licensed when expanding a right child ǫ of a right
child γ:

if α ¢ ... γ ... ∈ G
γ ¢ ... δ ǫ (l′) ∈ G
ǫ ¢ (l) ζ η (−) ∈ G where ζ ¢ ... /∈ G

then α/δ ǫ(l′) may transition to α/(l)ζ η(l′) in ΘQ (6)

For example, the following rules in G:

PP ¢ (IN) in NP (IN′)
NP ¢ the N
N ¢ (EVAL) eval N

license the following transition in ΘQ:

PP/the N(IN′) → PP/(EVAL)eval N(IN′)

from a syntactic state PP/the N (in which a prepositional
phrase has been recognized lacking the article the fol-
lowed by a noun category), to a syntactic state PP/eval N
(in which a prepositional phrase has been recognized lack-
ing the noun eval followed by a noun category), essen-
tially recognizing the symbol the in the first state, then
expanding the next symbol (N) within-level using the rule
N ¢ eval N.

2In fact, evidence from large syntactically annotated corpora sug-
gest that a large majority of English sentences can be recognized in
this transformed representation using only a three or four element
memory store [13]. Phrase structure trees can then be recovered via
an inverse transform, though this is not necessary for interpretation.

• Cross-level head recursion (a downward expansion in ΘQ)
is licensed when expanding a left descendant δ′ of a right
child γ′:

if α ¢ ... β γ ... ∈ G

γ
∗
¢ (−) ... γ′ (−) ∈ G

γ′
¢ (−) δ ǫ ... ∈ G

δ
∗
¢ (−) δ′ ... (−) ∈ G

δ′ ¢ (l) ζ η (l′) ∈ G where ζ ¢ ... /∈ G
then α/δ ǫ may expand to δ′/(l)ζ η(l′) in ΘQ (7)

where
∗
¢ indicates repeated application of a grammar rule.

For example, the following rules in G:

S ¢ (SELECT) select NP (SELECT′)
NP ¢ NP PP
NP ¢ the N

license the following expansion in ΘQ:

S/NP PP(SELECT′) → NP/the N

• Within-level head recursion (a rightward transition in ΘQ)
is licensed when expanding a right child ǫ of a left child β:

if α ¢ ... β γ ... ∈ G
β ¢ ... δ ǫ (l′) ∈ G

δ
∗
¢ ... δ′ (−) ∈ G

ǫ ¢ (l) ζ η (−) ∈ G where ζ ¢ ... /∈ G
then δ/δ′ may transition to β/(l)ζ η(l′) in ΘQ (8)

where
∗
¢ indicates repeated application of a grammar rule.

For example, the following rules in G:

S ¢ S PP
S ¢ NP VP
NP ¢ the N
N ¢ (DIFF) diff
VP ¢ is PP

license the following transition in ΘQ:

NP/diff → S/is PP

(This transition is not used in Figure 1, however.)

It is important to note that the order of the semantic relations
in these transitions is preserved from the original grammar
(labeled on the arcs in the figure). This ensures that if these



relations are applied in the order they occur in a tree (e.g.
as chains of matrix products that fork and join with the tree
structure), the result using the transformed tree-like HHMM
transitions will match that obtained using the original tree.

Referential states

In order to incorporate referential semantic interpretation
into this model, the intermediate (reduce) rd

t and modeled
(shift) sd

t variables at each depth and time step are then fur-
ther factored to include variables over referential states erd

t

and esd

t

, following Wu et al. [16], in addition to the syntac-

tic qsd

t

and final frd

t

states from the ordinary HHMM:

rd
t = 〈erd

t

, frd

t

〉 (9)

sd
t = 〈esd

t

, qsd

t

〉 (10)

In this paper, referential states will be constrained to first-
order sets of individuals from some world model domain.3

The model therefore behaves like a probabilistic version of
an incremental interpreter [8, 4], sequentially applying con-
straints associated with each hypothesized word to sets of
individuals hypothesized as the speaker’s intended referents.
As recognition progresses, these referent sets are winnowed
down (or replaced, depending on the defined relations); and
some (‘trajector’) referents may be shifted onto higher levels
of a stack while other (‘landmark’) referents are described,
to be composed or reduced together after this description has
finished.

Referential states introduced into HHMM reduce and shift
variables are constrained by labeled relations l (e.g. IN,
FOLDER) associated with syntactic states q. Relation labels
used during reduce and shift phases are defined using label
functions L′ and L, respectively.

Hypothesized referents erd

t

at each reduce phase of this

HHMM are constrained by the previous syntactic state qsd

t−1

using a reduce relation l′ = L′(qsd

t−1
), such that erd

t

=

l′(e
r

d+1

t

, e
s

d−1

t−1

). In a first-order world model, this means the

relation l′ with the set e
r

d+1

t

as an argument, constrains the

set esd

t−1
to erd

t

. Reduce probabilities at each level are there-

fore:4

PΘR
(rd

t | r
d+1
t sd

t−1s
d−1
t−1 )

def
=











if f
r

d+1

t

= 0 : [erd

t

= esd

t

] · [frd

t

= 0]

if f
r

d+1

t

= 1 : [erd

t

= l′(e
r

d+1

t

, e
s

d−1

t−1

)]

·PΘF
(frd

t

| d erd

t

qsd

t−1
q
s

d−1

t

)
(11)

where rD+1
t = 〈esD

t−1
,1〉 and s0

t = 〈e⊤,q⊤〉, and

l′(e
r

d+1

t

, e
s

d−1

t−1

) is a semantic function indexed by l′ applied

3But in principle there is nothing to prevent arbitrary descriptions
from serving as referents. The number of possible first-order sets
(of individuals) is exponential on the size of the domain of indi-
viduals. The techniques applied in this paper to efficiently estimate
sequences of referents can therefore be applied equally well to ref-
erents with continuous (i.e. infinite) domains.
4Here [·] is an indicator function: [φ] = 1 if φ is true, 0 otherwise.

to referents e
r

d+1

t

and e
s

d−1

t−1

. Here q⊤ is a start state and q⊥

is a null state.

Hypothesized referents esd

t

at each shift phase of this

HHMM are constrained by the current syntactic state qsd

t

using relations l = L(qsd

t

) and l′ = L′(qsd

t

), such

that PΘLL
(l l′ | d, l(e
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), e
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, qsd
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). Shift probabilities at each level are

therefore:
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r
d+1

t

qsd

t−1
q
s

d−1

t

)

·[esd

t

= l(e
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)

if f
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= 1, frd
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= 1 :
∑

l, l′

PΘLL
(l l′ | d e

s
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s
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·[esd
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= l(e
s
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·PΘQ
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| d l l′ q⊥ q
s

d−1

t

)

(12)

where rD+1
t = 〈esD

t−1
,1〉 and s0

t = 〈e⊤,q⊤〉, and l(e) is a

semantic function indexed by l applied to referent e.

The cases in the above equation are conditioned on final-
state boolean variables f

r
d+1

t

and frd

t

. In the first case, where

there is no final state immediately below the current level,
referential and syntactic states are simply copied forward.
The second and third cases correspond to (rightward) tran-
sition and (downward) expansion respectively, as defined in
the previous section. In these cases, referential and syntactic
states are chosen by:

1. selecting, according to a ‘description’ model ΘLL, a rela-
tion label l with which to constrain the current referent,
and a referent set esd

t

resulting from this constraint,

2. selecting, according to a ‘lexicalization’ model ΘQ, a syn-
tactic state qsd

t

that is compatible with this label (i.e. has

L(qsd

t

) = l).

In this definition, traditionally one-place relations like
FOLDER are represented as referential semantic transitions
over labeled edges l from supersets (referential states) esd

t−1

to subsets (other referential states) e
r

d+1

t

, defined by inter-

secting the superset esd

t−1
with the set of individuals satisfy-

ing the property l (see Figure 1).

Higher-arity relations like IN define more complex paths that
fork and rejoin. For example, the referent of the diff in the
eval folder in Figure 1 would be reachable only by:

1. storing the original set of diff files e{d1d2d3} as a top-
level referent in the HHMM hierarchy, then

2. traversing an IN relation departing e{d1d2d3} to obtain the
containers of those diffs e{f2f3}, then



3. traversing an EVAL relation departing e{f2f3} to constrain
this set to the set of eval folders that are also contain-
ers: e{f2}, then

4. traversing the inverse IN′ of relation IN to obtain the con-
tents of these folders, then constraining the original set of
diff files e{d1d2d3} by intersection with this resulting set
to yield the diff files in eval folders: e{d2}.

This ‘forking’ of referential semantic paths is handled via
syntactic recursion: one path is explored by the recognizer
while the other waits on the HHMM hierarchy (essentially
functioning as a stack). A sample template for branching
prepositional phrases that exhibit this forking behavior can
be expressed as below:

PP ¢ (IN) in NP (IN
′) (13)

where the inverse relation IN′ is applied when the NP ex-
pansion concludes or reduces (when the forked paths are re-
joined), as shown in Figure 1.

Negation and comparatives can also be modeled in this
framework as special types of relations between sets [16].

PRAGMATICS IN TRANSITION PROBABILITIES

One advantage of a first-order reference model (which al-
lows references to sets of individuals as well as to individu-
als themselves) is that it allows transition probabilities to be
based not only on properties of the individuals in the source
or destination sets, but also on properties of these sets taken
as a whole. For example, transition probabilities can be
made to reflect pragmatic constraints on felicitous reference
by conditioning on the cardinalities of the source and desti-
nation sets. Observations of these cardinalities in a graphical
interface domain, where the world model is shared with the
user via a display, suggest that:

1. referential transitions to empty sets are very unlikely –
users seem to naturally constrain themselves to refer only
to things on the display;

2. referential self-transitions (or redundant transitions,
which have no winnowing effect) are somewhat less likely
in this domain, but still possible (e.g. the diff file in the eval
folder when the eval folder contains only one file); and

3. referential transitions that apply substantial constraints
from the source referent to destination are the most com-
mon.

A simple statistic based on these observations can be used to
constrain decoding. The statistic used in this paper starts
with uniform probabilities over departing labels l (where
each label is associated with the first expanded state qdst of
some syntactic expansion rule qsrc ¢ qdst ...), then augments
these uniform probabilities with weights w(esrc , edst) for
the three classes of referential transition described above
(where esrc is the source referent and edst is the destination),

normalized over all destinations:5

PΘLL
(l l′ | esrc qsrc ...) =

[qsrc → .../(l)...(l′) ∈ ΘQ] · w(esrc , l(esrc))
∑

l,l′ [qsrc → .../(l)...(l′) ∈ ΘQ] · w(esrc , l(esrc))
(14)

Ideally these weights would be empirically determined, but
in the absence of an appropriate training set they can be set
by hand, e.g.:

w(esrc , edst) =

{

if 0 < |edst | = |esrc | : .1
if 0 < |edst | < |esrc | : 1
if 0 = |edst | : 0

(15)

The result is a simple probabilistic model of the pragmatic
intuition that people use language to provide meaningful ref-
erence.

RICH DOMAINS

The purpose of the experiments described in this paper was
to evaluate the effect of redundant descriptions using an in-
teractive semantic language model in a simulated design task
where redundant descriptions are a natural option for the
users. Earlier studies using interactive semantic language
models involve purely discrete structures such as file direc-
tories [16]. Since these use only one relation (CONTAIN), re-
dundant descriptions do not risk introducing very much am-
biguity, potentially exaggerating the advantage of this strat-
egy.

The present study was therefore conducted in the context of
a two-dimensional spatial design application in which refer-
ents can be sets of individuals with at least two continuous-
valued attributes (the x and y coordinates of each individual
object). The individuals used in this evaluation are rectan-
gles or ovals of varying size, at various locations.

The introduction of continuous-valued location and size co-
ordinates allows a generalization of the basic IN and CON-
TAIN relations based on location of the content individual
and the size of the container individual. Specifically the
CONTAIN relation is satisfied if the centroid of the content
is within the bounding box of the container; and IN is the
inverse of CONTAIN.

The introduction of continuous-valued attributes also allows
relative spatial relations ABOVE, BELOW, LEFTOF, and
RIGHTOF to be defined. These relations are satisfied when
the centroid of the trajector (the first referent) lies within
±45◦ of the appropriate cardinal direction.6

Relations in this framework are also designed to be aug-
mented by the user, whenever the grammar is modified. For
example, when nouns are added, usually an individual object
instantiating this noun is also added, with a corresponding

5Again, [·] is an indicator function: [φ] =
1 if φ is true, 0 otherwise.
6Regier and Carlson [10] propose a much more sophisticated
model, but the present definition is adequate for the experiment
described in this paper.



CHAIR :

(set-of-all i in (source-set) s-t

((type of i) is (chair)))

ROOM :

(set-of-all i in (source-set) s-t

((type of i) is (room)))

RIGHTOF :

(product-of (source-set) with

(matrix-from-each i to-each j s-t

((i is-not j)

and ((abs-of ((y of i)

minus (y of j)))

l-t-eq ((x of i)

minus (x of j))))))

RIGHTOF′ :

(intersection-of (context-set) with

(product-of (source-set) with

(matrix-from-each i to-each j s-t

((i is-not j)

and ((abs-of ((y of i)

minus (y of j)))

l-t-eq ((x of j)

minus (x of i)))))))

CONTAIN :

(product-of (source-set) with

(matrix-from-each i to-each j s-t

((i is-not j)

and (((abs-of ((y of i)

minus (y of j)))

l-t-eq (yradius of i))

and ((abs-of ((x of i)

minus (x of j)))

l-t-eq (xradius of i))))))

CONTAIN′ :

(intersection-of (context-set) with

(product-of (source-set) with

(matrix-from-each i to-each j s-t

((i is-not j)

and (((abs-of ((y of i)

minus (y of j)))

l-t-eq (yradius of j))

and ((abs-of ((x of i)

minus (x of j)))

l-t-eq (xradius of j)))))))

Figure 2. Sample relation definitions, as LISP-like scripts. Constants source-set and context-set refer to the first and second arguments

provided when the relation is called as a function (see Equations 11 and 12). Functions product-of and matrix-from apply relations to sets
by casting sets as vectors and relations as matrices. Keywords s-t abbreviate such that, l-t-eq abbreviate less than or equal to, and abs-of

abbreviate absolute value of.

object type. A new relation must therefore also be defined to
pick out individuals of this new type.

More complex relations can be added as well. The current
implementation uses a simple LISP-like scripting language
to abstractly specify relations based on discrete or continu-
ous attribute values (see Figure 2).7 From time to time the
implementation evaluates these scripts over the world model
and stores the result in a set of relation matrices. Composi-
tional semantics in this system can therefore be cast as ma-
trix multiplication chains which fork and join, as referents
are shifted and reduced in the HHMM memory store.

EVALUATION OF PERFORMANCE IN RICH DOMAINS

The performance of this framework was evaluated on a
testbed 2-D scene design domain. In this domain, subjects
were shown randomly-generated 2-D scenes containing 110
colored shapes designated as rooms, tables, chairs, dividing
walls, etc (see Figure 3).

Subjects were then told to direct the system to select pre-
defined goal sets of these shapes, using one or more spatial
relations (e.g. ‘in,’ ‘on,’ ‘above,’ ‘to the left’). Five subjects
each described 20 such goal sets, with an average sentence
error rate of 13% (see Table 1). Users were allowed to retry

7In principle, new syntactic expressions and associated relations
could be added using speech. In the current implementation, this is
not supported.

goals which were not correctly selected; in all cases the sys-
tem correctly selected the goal set after 1 or 2 retries.

These experiments used an off-the-shelf RNN acoustic
model [11] for ΘB, which provides a frame rate of 62.5Hz
(so T=62.5 per sec). At this frame rate, the system was ob-
served to run in approximately real time on a 2.4 GHz 64-bit
dual quad core server and a 2.4 GHz 64-bit dual core client,
using a beam width B of 100 hypotheses, a world model do-
main I with 110 individuals (so 2110 possible set referents),
and a relation label vocabulary L of size 30 (mapping to a
word vocabulary of size 50).

This experiment was then repeated for a large vocabulary
(L = 1000) with similar results (see Table 2). This is not
surprising, since the interactive semantic model constrains
the set of usable words to those that describe the available
set of individuals (the pragmatics described in the previous
section assigns zero probability to words that yield empty
referents).

EVALUATION OF REDUNDANT DESCRIPTIONS

To evaluate the contribution of redundant descriptions, users
were again presented with a scene design application and
were again asked to manipulate items in a scene.

Scene design task

The scene design task used in these experiments allows users
to select individual items and sets of items in a continu-



Figure 3. A sample world model scene resulting from the directive ‘se-

lect the glasses on a chair.’ Selected objects are outlined in red (black
in print). Such sets are difficult to select with a mouse.

ous two-dimensional scene. Each scene consists of several
named areas. Items are located throughout the scene, and
may be located in a named area or may be outside any named
area.

The sample scene used in this experiment contained 100
items, each with a unique name (see Figure 4). Each item
in the scene was randomly selected from a list of single-
syllable nouns. The resulting list contained many pairs of
nouns with similar pronunciations. In isolation, the nouns in
this list are easily confusable by a speech recognizer.

This experiment sought to determine whether redundant de-
scriptions in spoken commands produce a positive effect on
recognition accuracy in a semantic speech interface. Sub-
jects directed the system to select predefined items from the
scene using simple commands with no redundant informa-
tion (e.g. select the bed) and using more complex commands
with redundant information (e.g. select the bed to the left of
the chair). Each subject attempted to select each of 100 pre-
defined items first using simple commands with no redun-
dant information. After attempting to select an item, each
subject was directed to select the item using a more com-
plex commands with redundant information, regardless of
whether or not the prior utterance (with no redundant in-
formation) was correctly recognized. Subjects were free
to choose the prepositions and landmarks in the redundant
commands.

Empirical Results

A corpus of 1000 test sentences (no training sentences) was
collected from 5 native English speakers who were asked to
select items in the sample scene described above. For each
of 100 predetermined items, each subject attempted to select
the item, first using a simple command with no redundant
information, then using a more complex command with re-
dundant information.

Subject Sentence Corrected Corrected
error rate on 1st retry on 2nd retry

1 2 / 20 2 -
2 2 / 20 1 1
3 3 / 20 2 1
4 4 / 20 4 -
5 2 / 20 1 1

Total 13% 10 3

Table 1. Sentence error rate: number of times the system incor-

rectly selected the set of individuals described by the user, using I=110,
B=100, L=30.

Subject Sentence
error rate

1 2 / 20
2 1 / 20
3 5 / 20

Total 13%

Table 2. Sentence error rate: number of times the system incor-

rectly selected the set of individuals described by the user, using I=110,
B=100, L=1000.

Results are shown in Table 3. For sentences with no redun-
dant information, the overall sentence error rate was 32.6%.
This high error rate is to be expected, as this part of the task
is largely equivalent to isolated single word recognition of
monosyllabic words. Adding redundant information using a
single prepositional phrase results in a substantial 37% re-
duction in sentence error rate, from 32.6 to 20.6. The reduc-
tion in error rate is statistically significant to P=0.0035 by
pairwise per subject Student’s t test (two-tailed).

DISCUSSION

Intuitive User Strategies for Error Reduction

Adding redundant information reduced sentence error rates
by more than a third, and for one subject by over a half.
Users were free to select prepositional phrases that they felt
would be most useful. In informal interviews, test subjects
indicated that this enabled relatively natural error recovery;
if a non-redundant description resulted in a recognition error,
subjects tended to simply chose a redundant description that
would exclude the erroneous selection.

For example, if the original utterance was select the nut and
the system incorrectly selected the net, the user might follow
up with select the nut in the field. The scene contains only
one nut and one net; but because the nut is in the field and
the net is not, the additional semantic information provided
by the redundant prepositional phrase is able to usefully con-
strain the speech recognition to recognize the correct utter-
ance. Users were also observed to make explicit use of er-
roneously selected items in formulating followup utterances.
An example of this phenomenon could be seen when select
the track was erroneously recognized as select the trap. A
successful followup used trap in the redundant description:
select the track to the right of the trap.

This suggests that interactive language models provide users



Figure 4. Sample scene in the scene design task

not only with better basic accuracy than conventional tri-
gram models for content-creation domains, but also with a
natural means to explicitly trade speaking time for recog-
nition accuracy in cases where errors are more likely or
more difficult to repair. The implementation described in
this experiment can even be employed to let users explicitly
negate misrecognized (or potentially misrecognizable) anal-
yses: e.g. select the cart in the loft not in the lawn, making
the probability of the originally misrecognized description
extremely low.

CONCLUSION

This paper has described an experiment to determine
whether interactive semantic language models can allow
users to intuitively improve recognition accuracy of a spo-
ken language interface by providing redundant descriptions.
Interfaces based solely on word co-occurrences will typi-
cally increase their sentence error rate as sentence length
increases, since sentence error rate in co-occurrence-based
models is usually a result of largely independent errors on
individual words. The results described in this paper show
that the use of redundant phrases in an interactive semantic
speech interface instead results in a substantial and statisti-
cally significant decrease in error rate.

The use of interactive language models not only shows bet-
ter basic accuracy than conventional trigram models for
content-creation domains, it suggests an opportunity for
users to explicitly trade speaking time for recognition accu-
racy in cases where errors are more likely or more difficult
to repair.

Subject Sentence error rate Sentence error rate
without redundancy with redundancy

1 54 / 100 37 / 100
2 32 / 100 21 / 100
3 25 / 100 18 / 100
4 28 / 100 12 / 100
5 24 / 100 15 / 100

All 32.6% 20.6%

Table 3. Sentence error rate. Users attempted to select items in a scene
using simple descriptions (without descriptive prepositional phrase)
and then with a redundant descriptive prepositional phrase.
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