
REFERENTIAL SEMANTIC LANGUAGE MODELING FOR DATA-POOR DOMAINS

Stephen Wu, Lane Schwartz, and William Schuler

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, MN
{swu,lschwar,schuler}@cs.umn.edu

ABSTRACT

This paper describes a referential semantic language model that

achieves accurate recognition in user-defined domains with no avail-

able domain-specific training corpora. This model is interesting in

that, unlike similar recent systems, it exploits context dynamically,

using incremental processing and limited stack memory of an HMM-

like time series model to constrain search.

Index Terms— Natural language interfaces, Speech recogni-

tion, Artificial intelligence

1. INTRODUCTION

The development of general-purpose artificial assistants could have

a transformative effect on society from early education to elder care.

But to be useful, these assistants will need to communicate with the

people they assist in the mutable and idiosyncratic language of day

to day life, populated with proper names of co-workers, objects, and

local events not found in broad corpora. Language models gener-

ally require training corpora of example sentences, but interfaces for

assistants can exploit another source of information: a model of the

world with which they are expected to assist. This is an extremely

valuable resource – if the world model is mostly known by the user,

or even created by the user through the interface, hypothesized di-

rectives that do indeed describe entities in the world model are much

more likely to be correct than those that do not.

This paper describes a framework for incorporating referential

semantic information from a world model directly into a probabilis-

tic language model, rather than relying solely on phonologic and

syntactic information. Introducing world model referents into the

decoding search greatly increases the search space, but the decoder

can incrementally prune this search based on probabilities associated

with combined phonological, syntactic, and referential contexts.

This model is incremental in that interpretation is performed

in the order in which words are received. However, unlike earlier

constraint-based incremental interpreters [1, 2], the approach de-

scribed in this paper pursues multiple interpretations at once, ranked

probabilistically. Moreover, unlike more recent speech recognizers

which constrain search based on pre-compiled word n-grams [3, 4],

this approach can be applied in mutable environments without ex-

pensive pre-compilation, and can exploit intra-sentential contexts1.

Finally, since this approach performs interpretation based on the left-

to-right sharing of a Viterbi dynamic programming algorithm instead
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1For example, the initial semantic context of ‘go to the garage workbench,
and get . . . ’ gives a powerful constraint on possible completions.

of the bottom-up sharing of a CKY-like parsing algorithm [5, 6, 7, 8],

inter-sentential context can constrain semantics at the beginning of

recognition, avoiding the relatively unconstrained sets of referents

which arise at the bottom of a parser chart.

2. BACKGROUND

2.1. Referential Semantics

The language model described in this paper defines semantic refer-

ents in terms of a world model M. In model theory [9, 10], a world

model is defined as a tuple M = 〈E , J·K〉 containing a domain of

entity constants E and an interpretation function J·K to interpret ex-

pressions in terms of those constants. Here, J·K is quite versatile, ac-
cepting expressions φ that are logical statements (simple type TTT), ref-

erences to entities (simple type EEE), or functors (complex type 〈α, β〉)
that take an argument of type α and produce output of type β. These

functor expressions φ can then be applied to other expressions ψ of

type α as arguments to yield expressions φ(ψ) of type β. By nest-

ing functors, complex expressions can be defined, denoting sets or

properties of entities: 〈EEE,TTT〉, relations over entity pairs: 〈EEE, 〈EEE,TTT〉〉,
or higher-order functors over sets: 〈〈EEE,TTT〉, 〈EEE,TTT〉〉.

First order or higher models (in which functors can take sets as

arguments) can be mapped to equivalent zero order models (with

functors defined only on entities). This is generally motivated by

a desire to allow sets of entities to be described in much the same

way as individual entities [11]. Entities in a zero order model M
can be defined from entities in a higher order model M′ by map-

ping (or reifying) each set S = {e′
1, e

′
2, . . . } in P(EM′) (or set of

sets in P(P(EM′)), etc.) as an entity eS in EM.2 Zero order func-

tors in the interpretation function ofM can be defined directly from

higher order functors (over sets) inM′ by mapping each instance of

〈S1, S2〉 in Jl′KM′ : P(EM′)×P(EM′) to a corresponding instance
of 〈eS1

, eS2
〉 in JlKM : EM×EM. Set subsumption M′ can then

be defined on entities made from reified sets in M, similar to ‘ISA’

relations over concepts in knowledge representation systems [12].

These relations can be represented in a lattice, as shown in Figure 1.

2.2. Language Modeling and Hierarchic HMMs

The model described in this paper is a specialization of the Hid-

den Markov Model (HMM) framework commonly used in speech

recognition [13, 14]. HMMs characterize speech as a sequence of

hidden states qt (which may consist of speech sounds, words, or

other hypothesized syntactic or semantic information), and observed

states at (typically short, overlapping frames of an audio signal) at

2Here, P(X) is the power set of X , containing the set of all subsets.



corresponding time steps t. A most probable sequence of hidden

states q̂1..T can then be hypothesized given any sequence of observed

states o1..T , using Bayes’ Law (Equation 2) and Markovian indepen-

dence assumptions (Equation 3) to define the full P(q1..T | a1..T )
probability as the product of a Language Model (LM) prior probabil-

ity P(q1..T )
def
=

Q

t
PΘLM

(qt | qt−1) and an Acoustical Model (AM)

likelihood probability P(a1..T | q1..T )
def
=

Q

t
PΘAM

(at | qt):

q̂1..T = argmax
q1..T

P(q1..T | a1..T ) (1)

= argmax
q1..T

P(q1..T ) · P(a1..T | q1..T ) (2)

def
= argmax

q1..T

T
Y

t=1

PΘLM
(qt | qt−1) · PΘAM

(at | qt) (3)

Hierarchic Hidden Markov Models (HHMMs) [15] model lan-

guage model transitions P(αt |αt−1) using hierarchies of compo-

nent HMMs. Overall, transition probabilities are calculated in two

phases: a ‘reduce’ phase (resulting in an intermediate state β), in

which component HMMs may terminate; and a ‘shift’ phase (result-

ing in a modeled state αt), in which unterminated HMMs transition,

and terminated HMMs are re-initialized from their parent HMMs.

Variables over intermediate and modeled states are factored into se-

quences of depth-specific variables – one for each of theD levels in

the HMM hierarchy:

αt = 〈α1
t . . . α

D
t 〉 (4)

β = 〈β1
. . . β

D〉 (5)

Transition probabilities are then calculated as a product of transition

probabilities at each level:

P(αt |αt−1) =
X

β

P(β |αt−1) · P(αt |β αt−1) (6)

def
=

X

β1...βD

"

D
Y

d=1

PΘβ
(βd |βd+1

α
d
t−1)

#

·

"

D
Y

d=1

PΘα(αd
t |β

d
β

d+1
α

d−1
t α

d
t−1)

#

(7)

with βD+1 = β⊥ and α0
t = α⊤.

In Murphy-Paskin HHMMs, each modeled state variable αd
t is

a syntactic, lexical, or phonetic category qd
t and each intermediate

state variable βd is a boolean switching variable fd ∈ {0,1}.

α
d
t = q

d
t (8)

β
d = f

d
(9)

Instantiating Θβ as ΘMP-β , f
d is true when there is a transition at the

level below d and the stack element qd
t−1 is a final state:3

PΘMP-β
(fd | fd+1

q
d
t−1)

def
=

8

<

:

if fd+1= 0 : |fd= 0|
if fd+1= 1, qd

t−1∈F inal : |fd= 1|
if fd+1= 1, qd

t−1 6∈F inal : |fd= 0|

(10)

and shift probabilities at each level (instantiating Θα as ΘMP-α) are:

PΘMP-α
(qd

t | fd
f

d+1
q

d−1
t q

d
t−1)

def
=

8

<

:

if fd= 0, fd+1= 0 : |qd
t = q

d
t−1|

if fd= 0, fd+1= 1 : PΘMP-Trans
(qd

t | qd
t−1)

if fd= 1, fd+1= 1 : PΘMP-Init
(qd

t | qd−1
t )

(11)

3Here | · | is an indicator function: |φ| = 1 if φ is true, 0 otherwise.

and f⊥ = 1 and q⊤ = ROOT.

3. REFERENTIAL SEMANTIC DECODING

A referential semantic language model can now be defined as an

instantiation of an HHMM, interpreting directives in a reified world

model.

3.1. Dynamic Reference

The model of reference described in this paper is interesting in that

it transitions through time, basing the value of e at each time t on

the previous value of e, at time t−1. When a word w and associated

relation l is hypothesized, a referent e transitions from et−1 to et,

where et−1 is a hypothesized referent described by the utterance prior

to w, and et is the result of additionally constraining et−1 by JlKM
the meaning of w inM. The model is dynamically context sensitive

in the sense that referents et are defined in context of referent et−1.

The language model interacts with M through queries of the

form JlKM(eS1
, eS2

), where eS1
is an argument referent (if l is

a relation), and eS2
is a context referent. Recall the definition in

Section 2.1 of a zero-order model M with entities e{e′,e′′,... } rei-

fied from sets of individuals {e′, e′′, . . . } in a first- or higher-order

model M′. The context-sensitive reference model described in this

paper is conditioned on relations l over the reified sets in M, which

are defined in terms of corresponding relations l′ inM′:

if Jl′KM′ is of type 〈EEE,TTT〉 :

JlKM(eS1
, eS2

) = eS iff S = S2 ∩ Jl′KM′ (12)

if Jl′KM′ is of type 〈EEE, 〈EEE,TTT〉〉 :

JlKM(eS1
, eS2

) = eS iff S = S2 ∩ (S1 · Jl
′KM′) (13)

if Jl′KM′ is of type 〈〈EEE,TTT〉, 〈EEE,TTT〉〉 :

JlKM(eS1
, eS2

) = eS iff S = S2 ∩ Jl′KM′(S1) (14)

where relation products are defined to resemble matrix products:

S ·R = {e′′ | e′∈S, 〈e′, e′′〉∈R} (15)

Note that in each case above, the set of referents S corresponding to

the reified output of JlKM results from an intersection of the set S2

corresponding to the last argument of JlKM. This set S2 is the con-

text. All intersections with this context referent result in a transi-

tion from a less constrained referent (corresponding to a larger set in

M′) to a more constrained referent, (corresponding to a smaller set

in M′). These intersections can be viewed on a subsumption lattice

(see Figure 1).

3.2. A Referential Semantic Language Model

The referential semantic language model decomposes the HHMM

stack variables αd
t at each depth d and time step t into semantic ref-

erent (reified entity) ed
t and syntactic category cdt variables; and de-

composes the HHMM reduce variables βd into reduced referent ed
R

and final state fd
R variables:

α
d
t = 〈ed

t , c
d
t 〉 (16)

β
d = 〈ed

R, f
d
R〉 (17)
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Fig. 1. A subsumption lattice (laid on its side, in gray) over the

power set of a domain containing three files: f1 (a readable exe-

cutable), f2 (a readable data file), and f3 (an unreadable data file).

‘Reference paths’ made up of conjunctions of relations l (directed

arcs, in black) traverse the lattice from left to right toward the empty

set, as referents (e{...}, corresponding to sets of files) are incremen-

tally constrained by intersection with each JlKM. (Some arcs are

omitted for clarity.)

Reduce probabilities at each level (instantiating Θβ as ΘRSLM-β) are:

PΘRSLM-β
(〈ed

R f
d
R〉 | 〈e

d+1

R f
d+1

R 〉〈ed
t−1c

d
t−1〉)

def
= |ed

R= Jlabel-end(cdt )KM(ed+1

R , e
d
t−1)|

· PΘMP-β
(fd

R | fd+1

R c
d
t−1) (18)

where label-end(cdt ) defines a functor in J·KM at HMM final state cdt
to compose the result of the HMM at depth d with that at depth d−1.
Shift probabilities at each level (instantiating Θα as ΘRSLM-α) are:

PΘRSLM-α
(〈ed

t c
d
t 〉 | 〈e

d
R f

d
R〉〈e

d+1

R f
d+1

R 〉〈ed−1
t c

d−1
t 〉〈ed

t−1c
d
t−1〉)

def
=

8

>

>

>

>

<

>

>

>

>

:

if fd
R= 0, fd+1

R = 0 : |ed
t= e

d
R| · |c

d
t= c

d
t−1|

if fd
R= 0, fd+1

R = 1 : |ed
t= e

d
R| · PΘSyn-Trans

(cdt | c
d
t−1)

if fd
R= 1, fd+1

R = 1 :
X

l

PΘRef-Init
(l | ed−1

t cd−1
t )

·|ed
t= JlKM(ed−1

t , e⊤)|
·PΘSyn-Init

(cdt | l c
d−1
t )

(19)

and rD+1 = 〈eD
t−1,1〉 and s

0
t = 〈e⊤,ROOT〉.

3.3. Reference Transitions on a Subsumption Lattice

This model treats properties (unary relations like READABLE or

DATAFILE) as labeled transitions l′ on a subsumption lattice from

supersets et−1 to subsets et that result from intersecting et−1

with Jl′KM′ (see Figure 1).4

A general template for intersective adjectives can be expressed

as a noun phrase (NP) expansion using the following regular expres-

sion:

NP(g) → Det
`

Adj(g)
´∗

Noun:l(g)
`

PP(g)
˛

˛ RC(g)
´∗

where g is a variable over referential contexts (in this case, reified

sets of individuals that are considered potential referents while the

noun phrase is being interpreted), which is successively constrained

by the semantics of the adjective and noun relation l, followed by op-

tional prepositional phrase (PP) and relative clause (RC) modifiers.

4This lattice need not be an actual data structure. Since the world model
is queried incrementally, the lattice relations may be calculated as needed.

3.4. Reference Transitions with Relation Arguments

Sequences of properties (unary relations) can be interpreted as sim-

ple nonbranching paths in a subsumption lattice, but higher-arity re-

lations define more complex paths that fork and rejoin. As an exam-

ple of PP or RC modifiers, the set of directories(set g) that ‘contain

things that are user-readable objects’ would be reachable only by:

1. pushing the original set of directories g onto a referent stack,

2. traversing a CONTAIN relation departing g to obtain the con-

tents of those directories h,

3. traversing a READABLE relation departing h to constrain this

set to the set of contents that are also user-readable objects,

4. traversing the inverse CONTAIN
I of relation CONTAIN to ob-

tain the containers of these user-readable objects, then con-

straining the original set of directories g by intersection with

this resulting set to yield the directories containing user-

readable objects.

‘Forking’ is therefore handled via syntactic recursion: one path is

explored by the recognizer while the other waits on a stack. A gen-

eral template for branching reduced relative clauses (or prepositional

phrases) that exhibit this forking behavior can be expressed as below,

using the variables g and h defined above:

RC(g) → Verb:l(g, h) NP(h) −:l
I(h, g)

where the inverse or transpose relation lI at the last, empty con-

stituent ‘−’ is intended to apply when the NP expansion concludes

or reduces (this relation lI is returned by the end-label function de-

scribed earlier).

3.5. Training

Although linguistic training data for the envisaged applications of

this model are likely to be scarce, the reference model (ΘRef-Init) in-

troduced in Equation 19 can in principle be trained on non-linguistic

examples of how the interfaced system is used (e.g. which referents

in a world model are more likely to be modified). In the evaluation

described below, however, these were all set to uniform distributions

over the arcs departing each context referent.

The syntactic models ΘSyn-Init and ΘSyn-Trans in Equation 19 can

in principle be trained on-line, assuming non-zero priors for new

words. Again, however, in the evaluation described below, these

were all set to uniform over all regular expressions matching each

appropriate context.

Models not described in this paper, including pronunciation,

subphone transition, and acoustical models, were either taken di-

rectly from the Robinson RNN recognizer [16], or were provided in

the same way as described there (e.g. from a pronunciation lexicon).

4. EVALUATION

To evaluate the contribution to recognition accuracy of referential se-

mantics over that of syntax and phonology alone, a baseline (syntax

only) and test (baseline plus referential semantics) recognizer were

run on sample ontology manipulation directives in a benchmark ‘stu-

dent activities’ domain.

4.1. A Student Activities Database

The student activities ontology organizes extracurricular activities

under subcategories (e.g. sports⊃ football⊃ offense), and organizes



students into homerooms, in which context they can be identified by

a first or last name. Every student or activity is an entity e in the set

of entities E , and relations l are subcategories’ or persons’ names.

The original student activities world model M240 includes 240

entities in E : 158 categories (groups or positions) and 82 instances

(students), each connected via a labeled arc from a parent category.

An expanded version of the students ontology, M4175, includes

4175 entities from 717 concepts and 3458 instances. The extra en-

tities are merely distractors to the referents in M240, which remain

intact.

This ontology is manipulated using directives such as:

(1) ‘set homeroom two, Bell, to sports, football, captain’

which are incrementally interpreted by transitioning down the sub-

sumption lattice (e.g. from ‘sports’ to ‘football’ to ‘captain’) or fork-

ing to another part of the lattice (e.g. from ‘Bell’ to ‘sports’).

4.2. Empirical Results

A corpus of 144 test sentences (no training sentences) was collected

from 7 native English speakers (5 male, 2 female), who were asked

to make specific edits to the student activities ontology described

above.5 The average sentence length in this collection is 7.17 words.

Baseline and test versions of this system were run using a RNN

acoustical model [16] trained on the TIMIT corpus of read speech

[17]. Results below report concept error rate (CER), where concepts

correspond to relation labels in the world model.6

test correct subst delete insert CER

M240 86.4 11.3 2.34 3.41 17.1

M4175 84.5 13.5 2.05 4.39 19.9

M0 67.1 27.5 5.46 10.5 43.5

trigram fromM240 78.1 15.0 6.92 4.68 26.6

Results using the initial world model with 240 entities (M240)

show an overall 17.1% concept error rate. These directives, tested

with additional distracting referents in M4175, shows a slight CER

increase to 19.9%. The use of this world model with no linguistic

training data is comparable to that reported for other systems, which

were trained on sample sentences [4, 3].

In comparison, a baseline using only the grammar from the stu-

dents domain without any world model information and no linguistic

training data (M0) scores a CER of 43.5%, which is significantly

higher (p = 1.1× 10−19 using pairwise t-test withM240). A ‘com-

promise’ word trigram language model compiled from the referen-

tial semantic model above (in the 240-entity domain) scores 26.6%,

also significantly higher error than M240 (p = 3.2 × 10−5 using

pairwise t-test), suggesting that referential context is more predic-

tive than n-gram context. Moreover, this compilation to trigrams is

impractically expensive (requiring several hours of pre-processing),

as it must consider all combinations of entities in the world model.7

Though referents neglected by the beam early in the utterance

can cause recognition errors later, a sufficiently large beam mitigates

this effect. All evaluations ran in real time with a beamwidth of 1000

hypotheses per frame on an 8-processor 2.6GHz server.

5References to entities not found in the world model can be recognized,
but should be dispreferred in most applications.

6In this domain, directives are mostly sequences of relation labels, so
nearly every word is a concept.

7As time-series models, HHMMs can also be directly interporlated with
word n-gram models – but an analysis of the resulting model is beyond the
scope of this paper.

5. CONCLUSION

This paper has described a language model that achieves accu-

rate recognition in user-defined domains with no available domain-

specific training corpora, through the use of explicit hypothesized

semantic referents. This architecture requires that the interfaced ap-

plication make available a queriable world model, but the combined

phonological, syntactic, and referential semantic decoding process

ensures the world model is only queried when necessary, allowing

accurate real time performance even in large domains containing

several thousand entities.
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