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Unsupervised grammar induction = inferring syntax from raw text
Important for:

NLP in resource-poor languages
Syntactic acquisition modeling
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Modeling syntax acquisition with unsupervised parsing

Existing unsupervised parsing systems:
CCL (Seginer 2007)
UPPARSE (Ponvert, Baldridge, and Erik 2011)
BMMM+DMV (Christodoulopoulos, Goldwater, and Steedman 2012)
However, these do not implement:
Left-corner parsing (Johnson-Laird 1983; Abney and Johnson 1991; Gibson 1991; Resnik
1992; Stabler 1994; Lewis and Vasishth 2005)

Constraints on working memory (Miller 1956; Cowan 2001; McElree 2001; Van Dyke and
Johns 2012)
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The UHHMM as a syntax acquisition model

This work:
Unsupervised hierarchical hidden Markov model (UHHMM) parser
Left-corner parsing strategy
Limited working memory
Learns from distributional statistics (no world knowledge or reference)

Useful for NLP (only textual input needed)
Interesting for cognitive modeling (how much syntactic structure is distributionally detectible
by a human-like learner?)
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The UHHMM as a syntax acquisition model

We evaluate our learner on a corpus of child-directed input.
Results beat or closely match those of competing systems.
Conclusion: Much syntactic structure is distributionally detectible.
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Left-corner parsing

Maintains a store of derivation fragments a/b,a’/b’, ..., each consisting of active
category a lacking awaited category b.

Incrementally assembles trees by forking/joining fragments.



Left-corner parsing: Fork decision

No-fork (shift + match): Word satisfies b. a is complete.

a/b Xt

b—>Xt.
a



Left-corner parsing: Fork decision

Xt

Yes-fork (shift): Word does not satisfy b, fork off new complete category c.

a/b x + _
mb—)C..., C — Xi.

(+F)



Left-corner parsing: Join decision

2o

c b’

AN

Yes-join (predict + match): Complete category c¢ satisfies b while predicting b’. Store
updates from(...,a/b,c)to(...,a/b’).

a/b c¢

a/b’ b—-ch'.



Left-corner parsing: Join decision

a

/s

al

bl

No-join (predict): Complete category ¢ does not satisfy b. Predict new a’ and b’ from c.
Store updates from (..., a/b,c)to(...,a/b,a’/b’).

a/lb c + ., ,
mb—)a...,a—)Cb.
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Left-corner parsing

Four possible outcomes:
+F+J: Yes-fork and yes-join, no change in depth
—F-J: No-fork and no-join, no change in depth
+F-J: Yes-fork and no-join, depth increments
—F+J: No-fork and yes-join, depth decrements
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Unsupervised sequence modeling of left-corner parsing

A left-corner parser can be implemented as an unsupervised probabilistic sequence
model using hidden random variables at every time step for:

Active categories A

Awaited categories B

Preterminal or part-of-speech (POS) tags P

Binary switching variables F and J

There is also an observed random variable W over Words.
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Unsupervised sequence modeling of left-corner parsing

Model trained with batch Gibbs sampling (Beal, Ghahramani, and Rasmussen 2002;
Van Gael et al. 2008)

Calculate posteriors in a forward pass
Sample parse in a backward pass
Resample models at each iteration

Non-parametric (infinite) version described in paper. Parametric learner used in these
experiments.
Parses extracted from a single iteration after convergence.
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Experimental setup

Experimental conditions designed to mimic conditions of early language learning:

Child-directed input: Child-directed utterances from the Eve corpus of Brown (1973),
distributed with CHILDES (MacWhinney 2000).
Limited depth: Depth was limited to 2.

Children have more severe memory limits than adults (Gathercole 1998).

Greater depths rarely needed for child-directed utterances.
Small hypothesis space (Newport 1990): 4 active categories, 4 awaited categories, 8 parts
of speech.
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Gold standard: Hand-corrected PTB-style trees for Eve (Pearl and Sprouse 2013)
Competitors:

CCL (Seginer 2007)
UPPARSE (Ponvert, Baldridge, and Erik 2011)
BMMM+DMV (Christodoulopoulos, Goldwater, and Steedman 2012)
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Results: Comparison to other systems

UPPARSE
CCL
BMMM+DMV

60.50
64.70
63.63

51.96
53.47
64.02

55.90
58.55
63.82

UHHMM

68.83

57.18

62.47

Random baseline (UHHMM 1st iter)

Unlabeled bracketing accuracy by system on Eve.

51.69

38.75

44.30



Results:

UHHMM timecourse of acquisition
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Results: UHHMM uses of depth 2

+ Many uses of depth 2 are linguistically well-motivated.
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Subject-auxiliary inversion: (c.f. Chomsky 1968)

ACT4
-
POS2 AWA2
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oh POS8 AWAT
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—_—
POS7 POS1 POS3
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Results: UHHMM uses of depth 2

Ditransitive:

POS1
[
we

ACT1
AWA3
-
POS7 AWAT
i —
‘Ml ACT4 AWA4
—_— -—
POS7 POS5 POS6 AWA4
| | ! —_—
get you another POS3 POS8
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Results: UHHMM uses of depth 2

Contraction:

ACT4
-
ACT2 POS8
e ‘
ACT2 AWA2 ?
/\ /\
ACTH1 AWA4 POS8 AWA(1
—_— - ‘ —_—
POSH POS7 POS6 AWA4 ; ACT1 POS5
\ ! | —_— — N
that 's a POS6 POS3 POS7 POS5 it

pretty picture is n’t



Results: UHHMM uses of depth 2

All of these structures have flat representations in gold standard, so these insights are not
reflected in our accuracy scores.
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Conclusion

We presented a new grammar induction system (UHHMM) that

Models cognitive constraints on human sentence processing and acquisition

Achieves results competitive with SOTA raw-text parsers on child-directed input
This suggests that distributional information can greatly assist syntax acquisition in a
human-like language learner, even without access to other important cues (e.g. world
knowledge).
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Conclusion

Future plans:

Numerous optimizations to facilitate:
Larger state spaces
Deeper memory stores
Non-parametric learning

Adding a joint segmentation component in order to:
Model joint lexical and syntactic acquisition
Exploit word-internal cues (morphemes)

Downstream evaluation (e.g. MT)



Thank you!

Github:
https://github.com/tmills/uhhmm/
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Appendix: Joint conditional probability

Variable

Meaning

Wi

position in the sequence

observed word at position t

depth of the memory store at position t

stack of derivation fragments at ¢

active category at position t and depth1 <d <D
awaited category at position t and depth 1 <d <D
fork decision at position t

join decision at position t

state x state transition matrix

Table 1: Variable definitions used in defining model probabilities.



Appendix: Joint conditional probability
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Appendix: Part-of-speech model

Pas(pr1 65%) < Poe(pt1d bfy); d=maxigf; #qu)



Appendix: Lexical model
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Appendix: Fork model

Po (fi1055° pr wi) < Po.(f1d bZ, py); d=max{qf; #q.}



Appendix: Join model

Po,(jt | d @, b2!); d=maxg{gd,#q.} if =0

| ; e | (7)
Po,(jt|d pt b,);  d=maxg{ql,#q.} iffi=1

) def
Po,(jt 1G5 fr pr wi) = {



Appendix: Active category model

Po. (3P 10550 f pr we i) =
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[a- = 1d—1]] [a%=ad, ] -[[atd““D:aL]]; d=maxq{q%; #q.
{

}
}
}
la-*°=al:*°] - P@(d“ldq1p0 [a??P=a.l; d=maxq{q’,#q.}

if f,=0,j;=1
if ,=0,j=0
if f=1,j;=1
if fi=1,j=0



Appendix: Awaited category model
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}
}
}
}

if =0, j,=1
if =0, j,=0
if fr=1,j,=1
if fi=1,j;=0

9)



Appendix: Graphical model

Figure 1: Graphical representation of probabilistic left-corner parsing model expressed in

Equations 6—9 across two time steps, with D = 2.
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Appendix: Punctuation

Punctuation poses a problem — keep or remove?

Remove: Doesn't exist in input to human learners.
Keep: Might be proxy for intonational phrasal cues.

Punctuation was kept in training data in main result presented above.

We did an additional UHHMM run trained on data with punctuation removed (2000
iterations).



Appendix: Results (without punctuation)
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Appendix: Comparison by system (with and without punctuation)

With punc No punc
P R F1 P R F1

UPPARSE | 60.50 51.96 55.90 | 38.17 48.38 42.67

CCL | 64.70 53.47 58.55 | 56.87 47.69 51.88

BMMM+DMYV (directed) | 62.08 62.51 62.30 | 61.01 59.24 60.14
BMMM+DMV (undirected) | 63.63 64.02 63.82 | 61.34 59.33 60.32
UHHMM-4000, binary | 46.68 58.28 51.84 | 37.62 46.97 41.78
UHHMM-4000, flattened | 68.83 57.18 62.47 | 61.78 45.52 52.42
Right-branching | 68.73 85.81 76.33 | 68.73 85.81 76.33

Table 2: Parsing accuracy by system on Eve with and without punctuation (phrasal cues) in the input.
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